Evaluation of the thermodynamic stability of REMgAl11O19 (RE = La, Pr, Nd, Sm) hexaaluminates with a magnetoplumbite structure in the high temperature region
Abstract
This study is important due to the lack of reliable data about the properties of high temperature materials for energy production and aerospace engineering. The purpose of this article was to evaluate the thermodynamic stability of RE magnesium hexaaluminates REMgAl11O19 (RE = La, Pr, Nd, Sm) with a magnetoplumbite structure, which are promising components for thermal barrier coatings. For this, we calculated the values of the Gibbs energy of the decomposition reactions of RE magnesium hexaaluminates into simple oxides and aluminum-magnesium spinel MgAl2O4 and REAlO3 phases in the temperature range of 298–1,800 K. For calculations, we used data on the thermodynamic properties of hexaaluminates calculated from the values of heat capacity measured by differential scanning calorimetry in the range of 300-1,800 K and from values of thermodynamic properties of simple oxides, MgAl2O4, and REAlO3 provided in previous research. There is hardly any information about the thermodynamic properties of RE magnesium hexaaluminates, which are promising thermal barrier materials. The purpose of the article is to provide a thermodynamic evaluation of the probability of decomposition reactions of hexaaluminates in the high temperature region.
Previously published data on the high temperature heat capacity of compounds with the composition of REMgAl11O19 (RE = La, Pr, Nd, Sm) were used to calculate temperature dependences of entropy and changes in enthalpy, which were used to evaluate the Gibbs energy of the decomposition reactions of hexaaluminates into constituent oxides.
The temperature dependences of the Gibbs energy of the four possible decomposition reactions of hexaaluminates allowed drawing conclusions about thermodynamic stability in the high temperature region
Downloads
References
Huang E-W., Tung C., Liaw P. K. High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials. MRS Bulletin. 2019;44: 847–853. https://doi.org/10.1557/mrs.2019.257
Lakiza S. M., Grechanyuk M. I., Ruban O. K., … Prokhorenko S. V. Thermal barrier coatings: current status, search, and analysis. Powder Metallurgy and Metal Ceramics. 2018;57(1-2): 82–113. https://doi.org/10.1007/s11106-018-9958-0
Stiger M. J., Yanar M. M., Topping M. G., Pettit F. S., Meier G. H. Thermal barrier coatings for the 21st century. International Journal of Materials Research.1999;90(12): 1069–1078. https://doi.org/10.1515/ijmr-1999-901218
Tejero-Martin D., Bennett C., T. Hussain T. A review on environmental barrier coatings: History, current state of the art and future developments. Journal of European Ceramic Society. 2021;41(3): 1747–1768. https://doi.org/10.1016/j.jeurceramsoc.2020.10.057
Poliarus O., Morgiel J., Żórawski W., … Cherniushok O. Microstructure, mechanical and thermal properties of YSZ thermal barrier coatings deposited by axial suspension plasma spraying. Archives of Civil and Mechanical Engineering. 2023;23: 89(1-11). https://doi.org/10.1007/s43452-023-00616-8
Gorelov V. P., Belyakov S., Abdurakhimova R. K. Phase transitions in monoclinic ZrO2. Physics of Solid State. 2023;65(3): 461–466. https://doi.org/10.21883/pss.2023.03.55589.541
Frommherz M., Scholz A., Oechsner M., Bakan E., Vaßen R. Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-mode interfacial fracture toughness and sintering behavior. Surface and Coating Technologies. 2016;286: 119–128. https://doi.org/10.1016/j.surfcoat.2015.12.012
Kablov E. N., Doronin O. N., Artemenko N. I., Stekhov P. A., Marakhovskii P. S., Stolyarova V. L. Investigation of the physicochemical properties of ceramics in the Sm2O3–Y2O3–HfO2 system for developing promising thermal barrier coatings. Russian Journal of Inorganic Chemistry. 2020;65(6): 914–923. https://doi.org/10.1134/s0036023620060078
Chen L., Hu M., Guo J., Chong X., Feng J. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase. Journal of Materials Science and Technology. 2020;52: 20–28. https://doi.org/10.1016/j.jmst.2020.02.051
Chen L., Song P., Feng J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scripta Materialia. 2018;152: 117–121. https://doi.org/10.1016/j.scriptamat.2018.03.042
Chen L., Guo J., Zhu Y., Hu M., Feng J. Features of crystal structures and thermo-mechanical properties of weberites RE3NbO7 (RE = La, Nd, Sm, Eu, Gd) ceramics. Journal of American Ceramic Society. 2021;104: 404–412. https://doi.org/10.1111/jace.17437
Gadow R., Lischka M. Lanthanum hexaaluminate – novel thermal barrier coatings for gas turbine applications – materials and process development. Surface and Coating Technologies. 2002;151-152: 392–399. https://doi.org/10.1016/S0257-8972(01)01642-5
Pitek F. M., Levi C. G. Opportunities for TBCs in the ZrO2-YO1.5-TaO2.5 system. Surface and Coating Technologies. 2007;201: 6044–6050. https://doi.org/10.1016/j.surfcoat.2006.11.011
Mikhailov G. G., Makrovets L. A., Smirnov L. A. Thermodynamics of the processes of interaction of liquid metal components in Fe – Mg – Al – La – O system. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy. 2018;61(6): 460–465. https://doi.org/10.17073/0368-0797-2018-6-460-465
Friedrich С., Gadow R., Schirmer T. Lanthanum hexaaluminate – a new material for atmospheric plasma spraying of advanced thermal barrier coatings. Journal of Thermal Spray Technology. 2001;10(4): 592–598. https://doi.org/10.1361/105996301770349105
Lu H., Wang C.-An, Zhang C., Tong S. Thermo-physical properties of rare-earth hexaaluminates LnMgAl11O19 (Ln: La, Pr, Nd, Sm, Eu and Gd) magnetoplumbite for advanced thermal barrier coatings. Journal of the European Ceramic Society. 2015;35: 1297–1306. https://doi.org/10.1016/j.jeurceramsoc.2014.10.030
Gagarin P. G., Guskov A. V., Guskov V. N., Khoroshilov A. V., Ryumin M. A., Gavrichev K. S. Synthesis and high-temperature heat capacity of LaMgAl11O19 and SmMgAl11O19 hexaaluminates. Russian Journal of Inorganic Chemistry. 2023;68(11): 1599–1605. https://doi.org/10.1134/s0036023623602064
Gagarin P. G., Guskov A. V., Guskov V. N., Nikiforova G. E., Gavrichev K. S. Heat capacity and thermal expansion of LaMgAl11O19*. Russian Journal of Inorganic Chemistry. 2024;69(6): accepted for publication. (In Russ.)
Gagarin P. G., Guskov A. V., Guskov V. N., Khoroshilov A. V., Efimov N. N., Gavrichev K. S. Heat capacity and magnetic properties of PrMgAl11O19*. Russian Journal of Physical Chemistry A. 2024; accepted for publication. (In Russ.)
Gagarin P. G., Guskov A. V., Guskov V. N., Ryumin M. A., Nikiforova G. E., Gavrichev K. S. Heat capacity of magnesium-neodymium hexaaluminate NdMgAl11O19*. Russian Journal of Physical Chemistry A. 2024; accepted for publication. (In Russ.)
van der Laan R. R., Konings R. J. M., van Genderen A. C. G., van Miltenburg J. C. The heat capacity of NdAlO3 from 0 to 900 K. Thermochimica Acta. 1999;329: 1–6. https://doi.org/10.1016/S0040-6031(99)00006-4
Kopan A. R., Gorbachuk M. P., Lakiza S. M., Tishchenko Ya. S. Thermodynamic characteristics of SmAlO3 in the range 55–300 K. Powder Metallurgy and Metal Ceramics. 2012;51(3-4): 209–216. https://doi.org/10.1007/s11106-012-9419-0
Konings R. J. M., Beneš O., Kovács A., … Osina E. The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides. Journal of Physical and Chemical Reference Data. 2014;4: 013101-1–013101-95. https://doi.org/10.1063/1.4825256
Zinkevich M. Thermodynamics of rare earth sesquioxides. Progress in Materials Science. 2007;52: 597–647. https://doi.org/10.1016/j.pmatsci.2006.09.002
Chase M. W. Jr. NIST-JANAF thermochemical tables. Journal of Physical and Chemical Reference Data Monographs. Washington DC: American Inst. of Physics; 1998, 1951 p.
Barin I. Thermochemical Data of Pure Substances. 3rd Edition. Published jointly by G. Platzki. VCH – Weinheim; New York; Base1; Cambridge; Tokyo: VCH. 2003 p.
Glushko V. P. Thermal constants of substances*. Reference book. Moscow: 1965-1982. (In Russ.)
Zhang Y., Navrotsky A. Thermochemistry of rare-earth aluminate and aluminosilicate glasses. Journal of Non-Crystalline Solids. 2004;341: 141–151. https://doi.org/10.1016/j.jnoncrysol.2004.04.027
Gavrichev K. S., Guskov V. N., Gagarin P. G., Guskov A. V., Khoroshilov A. V. Heat capacity and thermodynamic properties of REMgAl11O19 (RE = La, Pr, Nd, Sm) hexaaluminates with magnetoplumbite structure. In: XXIV International Conference on Chemical Thermodynamics in Russia RCCT-2024, July 1–5, 2024, Ivanovo, Russia RCCT-2024. Book of abstracts. Ivanovo: JSC “Ivanovo Publishing House” Publ.; 2024. p. 318. Available at: https://rcct.isc-ras.ru/sites/default/files/collectionabstracts/56/rcct-2024.pdf
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.