Ternary molybdate K5Cu0.5Hf1.5(MoO4)6: synthesis, structure, thermal expansion and ionic conductivity
Abstract
Objective: A novel ternary molybdate, K5Cu0.5Hf1.5(MoO4)6, was synthesized using solid-state ceramic method. The sequence of chemical transformations involved in its formation was determined, revealing that the compound undergoes incongruent melting at 634 °C.
Experimental: The crystal structure was refined using the Rietveld method, revealing a trigonal structure (space group R3c) with unit cell parameters a = 10.5617(2) Å; c = 37.5017(7) Å; V= 3622.9(1) Å3, Rwp = 3.78. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy confirmed the presence of isolated MoO4 tetrahedra. The electrical conductivity of the title compound reached 7.5·10–4 S/cm at 550°C, with an activation energy Еа = 0.9 eV. Thermal deformations were investigated by high temperature powder X-ray diffraction (HT-XRD) over the temperature range of 30–500 °C.
Results: K5Cu0.5Hf1.5(MoO4)6 was classified as a high thermal expansion material (αV = 45·10–6 °C–1 at 500 °C), and exhibited low anisotropy. Combined results from electrochemical impedance spectroscopy (EIS) and HT-XRD indicated that the endothermic peak observed at 479 °С in the differential scanning calorimetry (DSC) curve corresponded to a first-order phase transition
Downloads
References
Ben N. W., Ben R. A. Ferroelectric properties and alternative current conduction mechanisms of lithium ubidium molybdate. Ionics. 2019;25: 4003–4012. https://doi.org/10.1007/s11581-019-02921-w
Tsyrenova G. D., Pavlova E. Т., Solodovnikov S. F., … Lazoryak B. I. New ferroelastic K2Sr(MoO4)2: synthesis, phase transitions, crystal and domain structures, ionic conductiv-ity. Journal of Solid State Chemistry. 2016;237: 64–71. https://doi.org/10.1016/j.jssc.2016.01.011
Spassky D., Vasil’ev A., Jamal M. U., … Nagirnyi V. Temperature dependent energy transfer to Eu3+ emission centres in K5Eu(MoO4)4 crystals. CrystEngComm. 2024;26(8): 1106–1116. https://doi.org/10.1039/d3ce01201h
Wang J., Luo L., Huang B., … Wang J. The preparation and optical properties of novel LiLa(MoO4)2:Sm3+,Eu3+ red phosphor. Materials. 2018;11(2): 297. https://doi.org/10.3390/ma11020297
Loiko P., Pavlyuk A., Slimi S., … Mateos X. Growth, spectroscopy and laser operation of monoclinic Nd:CsGd(MoO4)2 crystal with a layered structure. Journal of Luminescence. 2021;231: 117793. https://doi.org/10.1016/j.jlumin.2020.117793
Binish B., Durairaj M., Girisun Sabari T. C., Mani Rahulan K. Engineering the nonlinear optical properties of barium molybdate by doping Sn4+ ions for optical limiting device applications, Ceramics International. 2023;49(11): 17629–17638. https://doi.org/10.1016/j.ceramint.2023.02.129
Nasri R., Larbi T., Amlouk M., Zid M. F. Investigation of the physical properties of K2Co2(MoO4)3 for photocatalytic application. Journal of Materials Science: Materials in Electronics. 2018;29: 18372–18379. https://doi.org/10.1007/s10854-018-9951-x
Chimitova O. D., Bazarov B. G., Bazarova J. G., … Ehrenberg H. The crystal growth and properties of novel magnetic double molybdate RbFe5(MoO4)7 with mixed Fe3+/Fe2+ states and 1D negative thermal expansion. CrystEngComm. 2021;23: 3297–3307. https://doi.org/10.1039/D1CE00118C
Liu M., Zhang Y., Zou T., Garlea V. O., … Liu J.-M. Antiferromagnetism of double molybdate LiFe(MoO4)2. Inorganic Chemistry. 2020;59: 8127–8133. https://doi.org/10.1021/acs.inorgchem.0c00432
Grossman V. G., Molokeev M. S., Bazarov B. G., Bazarova J. G. Potassium and thallium conductors with a trigonal structure in the M2MoO4–Cr2(MoO4)3–Hf(MoO4)2 (M = K, Tl) systems: synthesis, structure, and ionic conductivity. Journal of Alloys and Compounds. 2021;873: 159828. https://doi.org/10.1016/j.jallcom.2021.159828
Savina A. A., Morozov V. A., Buzlukov A. L., … Khaikina E. G. New solid electrolyte Na9Al(MoO4)6: structure and a+ ion conductivity. Chemistry of Materials. 2017;29: 8901–8913. https://doi.org/10.1021/acs.chemmater.7b03989
Spiridonova T. S., Solodovnikov S. F., Molokeev M. S., … Khaikina E..G. Synthesis, crystal structures, and properties of newa centric glaserite-related compounds Rb7Ag5–3хSc2+х(XO4)9 (X = Mo, W). Journal of Solid State Chemistry. 2022;305: 122638. https://doi.org/10.1016/j.jssc.2021.122638
Solodovnikov S. F., Solodovnikova Z. A., Zolotova E. S., … Kuchumov B. M. Nonstoichiometry in the systems Na2MoO4–MMoO4 (M = Co, Cd), crystal structures of Na3.36Co1.32(MoO4)3, Na3.13Mn1.43(MoO4)3 and a3.72Cd1.14(MoO4)3, crystal chemistry, compositions and ionic conductivity of alluaudite-type double molybdates and tungstates. ournal of Solid State Chemistry. 2017;253: 121–128. https://doi.org/10.1016/j.jssc.2017.05.031
Kotova . Y., Belov D. A., Stefanovich S. Y. Ag1–xMg1–xR1+x(MoO4)3 Ag+-conducting nasicon-like phases, where R = Al or Sc and 0 ≤ x ≤ 0.5. Russian Journal of Inorganic Chemistry. 2011;56: 1189–1193. https://doi.org/10.1134/S0036023611080122
Buzlukov A. L., Fedorov D. S., Serdtsev A. V., … Medvedeva N..I. Ion mobility in triple sodium molybdates and tungstates with a NASICON structure. Journal of Experimental and Theoretical Physics. 2022;134: 42–50. https://doi.org/10.1134/S1063776122010071
Xu D., Zhang H., Pang L., … Zhou D. Novel B-site scheelite structure ceramic Bi(Ge0.5Mo0.5)O4 and its dielectric properties. Journal of the American Ceramic Society. 2023;106 (11): 6675–6683. https://doi.org/10.1111/jace.19282
Solodovnikov S. F., Gulyaeva O. A., Savina A. A., … Denisova T. A. Molybdates and tungstates of the alluaudite family: crystal chemistry, composition, and ionic mobility. Journal of Structural Chemistry. 2022;63: 1101–1133. https://doi.org/10.1134/S0022476622070071
Spiridonova T. S., Solodovnikov S. F., Molokeev M. S., … Khaikina E. G. Synthesis, crystal structures, and properties of newacentric glaserite-related compounds Rb7Ag(5–3x)Sc(2+x)(XO4)9 (X = Mo, W). Journal of Solid State Chemistry. 2022;305: 122638. https://doi.org/10.1016/j.jssc.2021.122638
Bugaris D. E., Loye H.-C. Li3Al(MoO4)3, a lyonsite molybdate. Acta Crystallographica Section C Crystal Structure Communications. 2012;C68: i34–i36. https://doi.org/10.1107/S0108270112020513
Grossman V. G., Molokeev M. S., Bazarov B. G., Bazarova J. G. Synthesis and characterization of a new magnesium molybdates Tl1.85M0.15Mg2(MoO4)3 (M = K, Rb) with a langbeinite type structure. Solid State Sciences. 2023; 142: 107249. https://doi.org/10.1016/j.solidstatesciences.2023.107249
Klevtsova R. F., Bazarova Zh. G., Glinskaya L. A., … Fedorov K. N. Synthesis of ternary potassium, magnesium, and zirconium molybdates. The crystal structure of K5(Mg0.5Zr1.5)·(MoO4)6. Journal of Structural Chemistry. 1994;35: 286–290. https://doi.org/10.1007/BF02578278
Klevtsova R. F., Bazarova Zh. G., Glinskaya L. A., Bazarov B. G., Fedorov K. N., Klevtsov P. V. Crystal structure investigation of ternary molybdate K5(Mn0.5Zr1.5)·(MoO4)6. J Struct Chem. 1995;36: 813–817. https://doi.org/10.1007/BF02579674
Klevtsova R. F., Bazarov B. G., Glinskaya L. A., … Bazarova Zh. G. Synthesis and X-ray study of single crystals of K5(Cd0.5Zr1.5)(MoO4)6 triple molybdate. J Struct Chem. 2002;43: 939–943. https://doi.org/10.1023/A:1023686325616
Grossman V. G., Molokeev M. S., Bazarova J. G., Bazarov B. G. High ionic conductivity of K5-xTlx(Mg0.5Hf1.5) (MoO4)6 (0 ≤ х ≤ 5) solid solutions. Solid State Sciences. 2022; 134: 107027. https://doi.org/10.1016/j.solidstatesciences.2022.107027
Bazarov B. G., Klevtsova R. F., Sarapulova A. E., Fedorov K. N., Glinskaya L. A., Bazarova Zh. G. Synthesis and crystal structure of ternary molybdate compound K5Pb0.5Hf1.5(MoO4)6. Journal of Structural Chemistry. 2005;46: 756–760. https://doi.org/10.1007/s10947-006-0197-8
Bazarov B. G., Sarapulova A. E., Klevtsova R. F., Glinskaya L. A., Fedorov K. N., Bazarova Zh. G. Synthesis, structure and vibration spectra of the triple molybdates Tl5A0.5Hf1.5(MoO4)6, A = Ca, Sr, Ba, Pb. Journal of Alloys and Compounds. 2008;448 (1–2): 325–330. https://doi.org/10.1016/j.jallcom.2006.11.086
Aksenov S. M., Pavlova Er. T., Popova N. N., Tsyrenova G. D., Lazoryak B. I. Stoichiometry and topological features of triple molybdates AxByCz(MoO4)n with the heteropolyhedral open MT-frameworks: synthesis, crystal structure of Rb5{Hf1.5Co0.5(MoO4)6}, and comparative crystal chemistry. Solid State Sciences. 2024;151: 107525.
https://doi.org/10.1016/j.solidstatesciences.2024.107525
Kovtunets E. V., Tushinova Yu. L., Logvinova A. V., Bazarova Ts. T., Bazarov B. G. Thermal expansion of ternary molybdate K5[Mn0.5Zr1.5](MoO4)6. ESSUTM Bulletin. 2024; 3(94): 90–97. https://doi.org/10.53980/24131997_2024_3_90
Kovtunets E. V., Spiridonova T. S., Tushinova Yu. L., Logvinova A. V., Bazarova Ts. T., Bazarov B. G. Thermal expansion and ionic conductivity of K5Pb0.5Zr1.5(MoO4)6. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4): 444–452. https://doi.org/10.21285/achb.939 (In Russ.)
ICDD PDF-2 Database, Cards № 01-072-0735, 01-073-0488, 01-077-0699, 01-083-2240.
Coelho A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of Applied Crystallography. 2018;51: 210–218. https://doi.org/10.1107/S1600576718000183
Bubnova R. S., Firsova V. A., Filatov S. K. Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT). Glass Physics and Chemistry. 2013;39: 347–350. https://doi.org/10.1134/S108765961303005X
Klevtsova R. F., Glinskaya L. A., Pasechnyuk N. P. Crystal structure of the binary molybdates K8Zr(MoO4)6 and K8Hf(MoO4)6. Kristallografiya. 1977;22: 1191–1195. (In Russ.)
Fomichev V. V., Poloznikova M. E., Kondratov O. I. Structural features and spectroscopic and energy characteristics of alkali metal molybdates and tungstates. Russian Chemical Reviews 1992;61(9): 877–888. https://doi.org/10.1070/RC1992v061n09ABEH001004
Petrushina M. Y., Korenev S. V., Dedova E. S., Gubanov A. I. Materials AM2О8 (А = Zr, Hf; М = W, Mo) with negative thermal expansion. J. Struct. Chem. 2020;61: 1655–1680. https://doi.org/10.1134/S0022476620110013
Pet’kov V. I., Shipilov A. S., Sukhanov M. V. Thermal expansion of MZr2(AsO4)3 and MZr2(TO4)x(PO4)3–x (M = Li, Na, K, Rb, Cs; T = As, V). Inorganic Materials. 2015;51(11): 1079–1085. https://doi.org/10.1134/S002016851510012X
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








