Study of photoluminescence kinetics in bulk GaPN and GaPNAs layers on silicon substrates grown by molecular beam epitaxy
Abstract
Objective: The aim of this work is to study bulk GaPN and GaPNAs layers grown by molecular beam epitaxy on silicon substrates. The optical properties of the heterostructures were investigated using photoluminescence. The technique of time-resolved photoluminescence (or photoluminescence kinetics) was employed to evaluate the carrier lifetime in bulk GaPN and GaPNAs layers.
Experimental: An investigation of the influence of the buffer layer on the heterostructure characteristics was conducted. The photoluminescence intensity in the bulk GaPN layer was found to be virtually identical for heterostructures employing either a buffer layer grown by Migration-Enhanced Epitaxy (MEE-GaP buffer) or a GaP buffer layer grown with a gradual temperature ramp from 450 to 600 °C.
Conclusion: It was shown that the lifetime of minority carriers in the bulk GaPN layer grown on a silicon substrate is determined to a greater extent by defects introduced during the nitrogen incorporation into the GaP lattice, rather than by defects caused by growth on silicon substrate
Downloads
References
Henini M. Dilute nitride semiconductors. Elsevier; 2005. https://doi.org/10.1016/B978-0-08-044502-1.X5000-8
Shan W., Walukiewicz W., Yu K. M., …Tu C. W. Nature of the fundamental band gap in GaNxP1−x alloys. Applied Physics Letters. 2000; 76: 3251. https://doi.org/10.1063/1.126597
Buyanova I. A., Pozina G., Bergman J. P., Chen W. M., in H. P., Tu C. W. Time-resolved studies of photoluminescence in GaNxP1−x alloys: evidence for indirect-direct band gap crossover. Applied Physics Letters. 2002;81(1): 52–54. https://doi.org/10.1063/1.1491286
Kent P. R. C., Zunger A. Theory of electronic structure evolution in GaAsN and GaPN alloys. Physical Review B. 2001; 64(11): 115208. https://doi.org/10.1103/PhysRevB.64.115208
Geisz J. F., Friedman D. J. III–N–V semiconductors for solar photovoltaic applications. Semiconductor Science and Technology. 2002; 17(8): 769–777. https://doi.org/10.1088/0268-1242/17/8/305
Geisz J. F., Olson J. M., Friedman D. J., Jones K. M., Reedy R. C., Romero M. J. Lattice-matched GaNPAs-onsilicon tandem solar cells. In: Conference Record of the Thirtyfirst IEEE Photovoltaic Specialists Conference. 2005. (pp. 695–698). IEEE. https://doi.org/10.1109/PVSC.2005.1488226
Baranov A. I., Gudovskikh A. S., Nikitina E. V., Egorov A. Y. Photoelectric properties of solar cells based on GaPNAs/GaP heterostructures. Technical Physics Letters. 2013; 39: 1117– 1120. https://doi.org/10.1134/S1063785013120171
Khoury M., Tottereau O., Feuillet G., Vennégués P., Zúñiga-Pérez J. Evolution and prevention of meltback etching: Case study of semipolar GaN growth on patterned silicon substrates. Journal of Applied Physics. 2017;122(10): 105108. https://doi.org/10.1063/1.5001914
Takagi Y., Yonezu H., Samonji K., Tsuji T., Ohshima N. Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si(100) substrates. Journal of Crystal Growth. 1998;187(1): 42–50. https://doi.org/10.1016/S0022-0248(97)00862-2
Volz K., Beyer A., Witte W., Ohlmann J., Németh I., Kunert B., Stolz W. GaP-nucleation on exact Si (001) substrates for III/V device integration. Journal of Crystal Growth. 2011;315(1): 37–47. https://doi.org/10.1016/j.jcrysgro.2010.10.036
Fedorov V. V., Fedina S. V., Kaveev A. K., Kirilenko D. A., Faleev N. N., Mukhin I. S. The formation of single-omain gallium phosphide buffer layers on a silicon substrate without the use of migration enhanced epitaxy rchnique. St. Petersburg Polytechnical University Journal: Physics and Mathematics. 2024;17(2): 120–133. https://doi.org/10.18721/JPM.17209
Rumyantsev O. I., Brunkov P. N., Pirogov E. V., Egorov A. Yu. Study of defects in heterostructures with GaPAsN and GaPN quantum wells in the GaP matrix. Semiconductors. 2010;44(7): 893–897. https://doi.org/10.1134/s1063782610070110
Kudryashov D. A., Gudovskikh A. S., Nikitina E. V., Egorov A. Yu. Design of multijunction GaPNAs/Si heterostructure solar cells by computer simulation. Semiconductors. 2014;48(3): 381–386. https://doi.org/10.1134/s1063782614030154
Nikitina E. V., Sobolev M. S., Pirogov E. V., … Kryzhanovskaya N. V. Photoluminescence of GaPNAs/GaP(N) superlattices and bulk GaPN layers on GaP substrates. Condensed Matter and Interphases. 2024;26(3): 490–495. https://doi.org/10.17308/kcmf.2024.26/12224
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








