Electrochemical Oxidation of Formic Acid on the Surface of an Anodically Modifi ed Ag15Pd Alloy

Keywords: alloy, silver, palladium, selective dissolution, phase transformation, formic acid, electrooxidation

Abstract

It was shown that the phase transformation of palladium into its own phase during the selective dissolution of the Ag15Pd alloy proceeds in the instantaneous nucleation mode and is limited by the surface diffusion of Pd ad-atoms to the growing three-dimensional nucleus of the new phase. The kinetic regularities of the electrooxidation of formic acid on an Ag15Pd alloy subjected to preliminary selective dissolution were established using transient electrochemical methods. It was found that the process of anodic destruction of HCOOH in an acidic sulphate solution proceeds at a higher rate on the anodically
modifi ed Ag15Pd alloy, the surface of which is morphologically developed and enriched with palladium as a result of potentiostatic selective dissolution under overcritical polarization conditions. The process of electrooxidation of HCOOH is non-stationary, proceeds in a mixed-kinetic mode and accelerates with increasing anodic potential. Kinetic currents of anodic oxidation of formic acid were determined by the chronoamperometry. A correlation between the value of the electric charge transferred during preliminary anodic modifi cation of the Ag15Pd alloy and the rate of the kinetic stage of the electrooxidation of HCOOH was revealed

 

 

 

REFERENCES

1. Bedova E. V., Kozaderov O. A. Electrooxidation Kinetics of formic acid on anodically modifi ed silverpalladium alloys. Electrochemical Energetics, 2018;18(3):
141–154. DOI: https://doi.org/10.18500/1608-4039-2018-18-3-141-154 (In Russ., abstract in Eng.)
2. Marshakov I. K., Vvedensky A. V., Kondrashin V. Yu., Bokov G. A. Anodnoye rastvoreniye i selektivnaya
korroziya splavov [Anodic dissolution and selective corrosion of alloys]. Voronezh: Voronezh University
Press; 1988. 208 p. (In Russ.).
3. Encyclopedia of electrochemistry. Vol. 4. Corrosion and oxide films. Eds. A. J. Bard, M. Stratmann,
G. S. Frankel. Weinheim (Germany): Wiley-VCH; 2003. 755 p.
4. Landolt D. Corrosion and Surface Chemistry of Metals. EPFL Press; 2007. 632 p. DOI:
https://doi.org/10.1201/9781439807880
5. Keshe G. Korroziya metallov. Fiziko-himicheskie principy I aktualnye problem [Corrosion of metals.
Physiochemical principles and actual problems]. Moscow: Metallurgy Publ.; 1984. 400 p. (In Russ.)
6. Marshakov I. K. Termodinamika i korroziya splavov [Thermodynamics and corrosion of alloys].
Voronezh: Voronezh University Press; 1983. 168 p. (In Russ.)
7. Kozaderov O.A. Massoperenos, fazoobrazovaniye i morfologicheskaya nestabilnost poverkhnostnogo sloya pri selektivnom rastvorenii gomogennykh metallicheskikh splavov. Dis. dr. him. nauk [Mass transfer, phase formation and morphological instability of the surface layer during the selective dissolution of homogeneous metal alloys]. Diss. DSc in. chemistry. Voronezh: 2016.
361 p. (In Russ.). Available at: http://www.science.vsu.ru/disserinfo&cand=2897
8. Zartsyn I. D., Vvedensky A. V., Marshakov I. K. Nonequilibrium behavior of the surface-layer in
anodic-dissolution of homogeneous alloys. Russian Journal of Electrochemistry. 1994;30(4): 492–512.
Available at: https://www.elibrary.ru/item.asp?id=29204402
9. Zartsyn I. D., Vvedensky A. V., Marshakov I. K. Conversions of the noble component during selective
dissolution of anhomogeneous alloy in the active state. Protection of Metals. 1991;27(1): 1–9. Available at:
https://www.elibrary.ru/item.asp?id=23951443
10. Zartsyn I. D., Vvedensky A. V., Marshakov I. K. Termodinamika neravnovesnykh fazovykh
prevrashcheny pri selektivnom rastvorenii gomogennykh binarnykh splavov [Thermodynamics of nonequilibrium phase conversion under selective dissolution of homogeneous binary alloys]. Protection
of Metals. 1991;27(6): 883–891. Available at: https://www.elibrary.ru/item.asp?id=12712615 (In Russ.)
11. Kozaderov O. A., Vvedensky A. V. Massoperenos i fazoobrazovanie pri anodnom selectivnom rastvorenii
gomogennyh splavov [Mass transfer and phaseformation during anodic selective dissolution of
homogeneous alloys]. Voronezh: Nauchnaya kniga Publ.; 2014. 288 p.
12. Liu W. B., Zhang S. C., Li N., Zheng J. W., An S. S., Xing Y. L. A general dealloying strategy to
nanoporous intermetallics, nanoporous metals with bimodal, and unimodal pore size distributions
Corrosion Science. 2012;58: 133–138. DOI: https://doi.org/10.1016/j.corsci.2012.01.023
13. Hakamada M., Chino Y., Mabuchi M. Nanoporous surface fabricated on metal sheets by alloying/
dealloying technique. Materials Letters. 2010;64(21): 2341–2343. DOI: https://doi.org/10.1016/j.matlet.2010.07.046
14. Weissmüler J., Newman R. C., Jin Hai-Jun, Hodge A. M. Nanoporous metals by alloy corrosion:
Formation and mechanical properties. MRS Bull.
2009;34(8): 577–586. DOI: https://doi.org/10.1557/mrs2009.157
15. Erlebacher J., Aziz M. J., Karma A., Dimitrov N., Sieradzki K. Evolution of nanoporosity in dealloying.
Nature. 2001;410(6827): 450–453. DOI: https://doi.org/10.1038/35068529
16. Wang Y., Wu B., Gao Y., Tang Y., Lu T., Xing W., Liu Ch. Kinetic study of formic acid oxidation on
carbon supported Pd electrocatalyst. Journal of Power Sources. 2009;192(2): 372–375. DOI: https://doi.org/10.1038/35068529
17. Rice C., Ha S., Masel R. I., Waszczuk P., Wieckowski A., Barnard T. Direct formic acid fuel cells.
J. Power Sources. 2002;111(1): 83–89. DOI: https://doi.org/10.1016/S0378-7753(02)00271-9
18. Rice C. A., Wieckowski A. Electrocatalysis of formic acid oxidation. In: Shao M. (eds.) Electrocatalysis
in Fuel Cells. Lecture Notes in Energy. London: Springer; 2013:9. 43–67. DOI: https://doi.org/10.1007/978-1-4471-4911-8
19. Jiang K., Zhang H., Zou Sh., Cai W. Electrocatalysis of formic acid on palladium and
platinum surfaces : from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014;16. 20360–20376. DOI: https://doi.org/10.1039/C4CP03151B
20. Hansen M., Anderko K. P. Constitution of binary alloys. New York: McGraw-Hill; 1958. 1305 p.
21. Isaev V.A. Jelectrohimicheskoe fazoobrazovanie [Electrochemical phase formation] Ekaterinburg Publ.;
2007. 123 p. (In Russ.).
22. MacDonald D.D. Transient techniques is electrochemistry. New York; London: Plenum Press.;
1977. 329 p. DOI: https://doi.org/10.1007/978-1-4613-4145-1

Downloads

Download data is not yet available.

Author Biographies

Evgeniya V. Bedova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student,
Department of Physical Chemistry, Faculty of
Chemistry, Voronezh State University, Voronezh,
Russian Federation; e-mail: iev.vsu@mail.ru.

Evgeniya A. Tonkih, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

MSc student, Department of
Physical Chemistry, Faculty of Chemistry, Voronezh
State University, Voronezh, Russian Federation; email:
ok@chem.vsu.ru.

Oleg A. Kozaderov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Associate
Professor, Head of the Department of Physical
Chemistry, Faculty of Chemistry, Voronezh State
University, Voronezh, Russian Federation; e-mail:
ok@chem.vsu.ru.

Published
2020-06-25
How to Cite
Bedova, E. V., Tonkih, E. A., & Kozaderov, O. A. (2020). Electrochemical Oxidation of Formic Acid on the Surface of an Anodically Modifi ed Ag15Pd Alloy. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(2), 204-210. https://doi.org/10.17308/kcmf.2020.22/2832
Section
Статьи

Most read articles by the same author(s)

<< < 1 2