Luminescent properties of colloidal mixtures of Zn0.5Cd0.5S quantum dots and gold nanoparticles

Keywords: Zn0.5Cd0.5S quantum dots, gold nanoparticles, core/shell, silicon dioxide (SiO2 ), extinction spectrum, plasmonexciton interaction

Abstract

The aim of the study is to establish spectral-luminescent interaction effects in mixtures of colloidal Zn0.5Cd0.5S quantum dots passivated with 2-mercaptopropionic acid and Au and Au/SiO2
nanoparticles. The studied samples of Zn0.5Cd0.5S quantum dots, Au and Au/SiO2 nanoparticles and their mixtures were obtained by methods of colloidal synthesis and were characterised using transmission electron microscopy. The absorption, luminescence and time-resolved luminescence
spectroscopy were used as the main investigation methods. The measurements were carried out at temperatures of 77 K and 300 K. The spectral-luminescent properties of “free” Zn0.5Cd0.5S quantum dots and those interacting with Au and Au/SiO2 nanoparticles were compared. It was found that the luminescence properties of Zn0.5Cd0.5S quantum dots can be controlled under conditions of changing plasmon-exciton coupling achieved during the formation of a dielectric SiO2 shell  on the surface of Au nanoparticles as well as a result of a polymer introduced into the colloidal mixture.

Downloads

Download data is not yet available.

Author Biographies

Oleg V. Ovchinnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and
Mathematics, Professor, Department of Optics and
Spectroscopy, Voronezh State University, Voronezh,
Russian Federation; e-mail: ovchinnikov_o_v@rambler.ru

Mikhail S. Smirnov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

 PhD in Physics and Mathematics,
Associate Professor, Department of Optics and
Spectroscopy, Voronezh State University, Voronezh,
Russian Federation; e-mail: smirnov_m_s@mail.ru.

Irina G. Grevtseva, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and Mathematics,
Lecturer, Department of Optics and Spectroscopy,
Voronezh State University, Voronezh, Russian
Federation; e-mail: grevtseva_ig@inbox.ru.

Violetta N. Derepko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD student, Department of
Optics and Spectroscopy, Voronezh State University,
Voronezh, Russian Federation; e-mail: viol.physics@gmail.com

Tamara A. Chevychelova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD student, Department
of Optics and Spectroscopy, Voronezh State University,
Voronezh, Russian Federation; e-mail: t.chevychelova@rambler.ru

Liana Yu. Leonova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and Mathematics,
Associate Professor, Department of Optics and
Spectroscopy, Voronezh State University, Voronezh,
Russian Federation; e-mail: liana.leonova@mail.ru.

Aleksey S. Perepelitsa, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and
Mathematics, senior lecturer, Department of Optics
and Spectroscopy, Voronezh State University, Voronezh,
Russian Federation; e-mail: a-perepelitsa@yandex.ru

Tamara S. Kondratenko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and
Mathematics, Associate Professor, Department of Optics and Spectroscopy, Voronezh State University,
Voronezh, Russian Federation; e-mail: tamarashatskikh@rambler.ru.

References

Luo Y., Zhao J. Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Research. 2019;12(9): 2164–2171. https://doi.org/10.1007/s12274-019-2390-z

Lepeshov S. I., Krasnok A. E., Belov P. A., Miroshnichenko A. E. Hybrid nanophotonics. Physics-Uspekhi. 2018;61(11): 1035–1050. https://doi.org/10.3367/UFNe.2017.12.038275

Khan I., Saeed K., Khan I. Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7): 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

Kim K.-S., Kim J.-H., Kim H., Laquai F., Arifin E., Lee J.-K., Yoo S., Sohn B.-H. Switching Off FRET in the hybrid assemblies of diblock copolymer micelles,quantum dots, and dyes by plasmonic nanoparticles. ACS Nano. 2012;6(6): 5051–5059. https://doi.org/10.1021/nn301893e

Andreeva O. V., Sidorov A. I., Staselko D. I., Khrushcheva T. A. Synthesis and optical properties of hybrid “plasmon-exciton” nanostructures based on Ag-AgI in nanoporous silica glass. Physics of the Solid State. 2012;54(6): 1293–1297. https://doi.org/10.1134/S1063783412060029

Chen G. Y., Chen Y. N., Chuu D. S. Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire. Optics Letters. 2008;33(19): 2212–2214. https://doi.org/10.1364/OL.33.002212

Akimov A. V., Mukherjee A., Yu C. L., Chang D. E., Zibrov A. S., Hemmer P. R., Park H., Lukin M. D. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature. 2007;450(7168): 402–406. https://doi.org/10.1038/nature06230

Fedutik Y., Temnov V. V., Schöps O., Woggon U., Artemyev M. V. Exciton-plasmon-photon conversion in plasmonic nanostructures. Physical Review Letters. 2007;99(13): 136802. https://doi.org/10.1103/PhysRevLett.99.136802

Govorov A. O., Lee J., Kotov N. A. Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Physical Review B. 2007;76: 125308. https://doi.org/10.1103/PhysRevB.76.125308

Zhang W., Govorov A. O., Bryant G. W. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect. Physical Review Letters. 2006;97: 146804. https://doi.org/10.1103/PhysRevLett.97.146804

Leng H., Szychowski B., Daniel M.-Ch.,Pelton M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nature Communications. 2018;9: 4012. https://doi.org/10.1038/s41467-018-06450-4

Cao En, Lin W., Sun M., Liang W., Song Yu. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics. 2018;7(1): 145–167. https://doi.org/10.1515/nanoph-2017-0059

Pompa P. P., Martiradonna L., Torre A. D., Sala F. D., Manna L., Vittorio M. De, Calabi F., Cingolani R., Rinaldi R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nature Nanotechnology. 2006;1: 126–130. https://doi.org/10.1038/nnano.2006.93

Turkevich J., Stevenson P. C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussion Faraday Society. 1951;11:55–75. https://doi.org/10.1039/df9511100055

Krivenkov V., Dyagileva D., Samokhvalov P., Nabiev I., Rakovich Yu. Effect of spectral overlap and separation distance on exciton and biexciton quantum yields and radiative and nonradiative recombination rates in quantum dots near plasmon nanoparticles. Annalen der Physik. 2020;532(8): 2000236. https://doi.org/10.1002/andp.202000236

Smirnov M. S., Ovchinnikov O. V., Hazal N. A. R., Zvyagin A. I. Control over the size effect in the spectroscopic properties of ZnxCd1–xS colloidal quantum dots. Inorganic Materials. 2018;54(5): 413–420. https://doi.org/10.1134/S002016851805014X

Kondratenko T. S., Smirnov M. S., Ovchinnikov O. V., Shabunya-Klyachkovskaya E. V., Matsukovich A. S., Zvyagin A. I., Vinokur Y. A. Sizedependent optical properties of colloidal CdS quantum dots passivated by thioglycolic acid. Semiconductors. 2018;52(9): 1137–1144 https://doi.org/10.1134/S1063782618090087

Ovchinnikov O. V., Smirnov M. S., Shapiro B. I., Shatskikh T. S., Latyshev A. N., Mien Ph. Thi Hai, Khokhlov V. Yu. Spectral manifestations of hybrid association of CdS colloidal quantum dots with methylene blue molecules. Optics and Spectroscopy. 2013;115(3): 340–348. https://doi.org/10.1134/S0030400X1309018X

Smirnov M. S., Buganov O. V., Shabunya-Klyachkovskaya E. V., Tikhomirov S. A., Ovchinnikov O. V., Vitukhnovsky A. G., Perepelitsa A. S., Matsukovich A. S., Katsaba A. V. Dynamics of electronic excitations decay in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states.Physica E: Low-dimensional Systems and Nanostructures. 2016;84: 511–518. https://doi.org/10.1016/j.physe.2016.07.004

Kondratenko T. S., Grevtseva I. G., Zvyagin A. I., Ovchinnikov O. V., Smirnov M. S. Luminescence and nonlinear optical properties of hybrid associates of Ag2S quantum dots with molecules of thiazine dyes. Optics and Spectroscopy. 2018;124(5): 673–680. https://doi.org/10.1134/S0030400X18050090

Ievlev V. M., Latyshev A. N., Ovchinnikov O. V., Smirnov M. S., Klyuev V. G., Kholkina A. M., Utekhin A. N., Evlev A. B. Photostimulated formation of antistokes luminescence centers in ionic covalent crystals. Doklady Physics. 2006;51(8): 400–402. https://doi.org/10.1134/S1028335806080027

Published
2021-03-16
How to Cite
Ovchinnikov, O. V., Smirnov, M. S., Grevtseva, I. G., Derepko, V. N., Chevychelova, T. A., Leonova, L. Y., Perepelitsa, A. S., & Kondratenko, T. S. (2021). Luminescent properties of colloidal mixtures of Zn0.5Cd0.5S quantum dots and gold nanoparticles. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(1), 49–55. https://doi.org/10.17308/kcmf.2021.23/3302
Section
Статьи