Phase relations in the CuI-SbSI-SbI3 composition range of the Cu–Sb–S–I quaternary system

  • Parvin R. Mammadli Azerbaijan State Oil and Industry University, French - Azerbaijani University, 183 Nizami str., Baku AZ-1010, Azerbaijan; Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan https://orcid.org/0000-0002-8062-1485
  • Vagif A. Gasymov Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan https://orcid.org/0000-0001-6233-5840
  • Ganira B. Dashdiyeva Baku Engineering University, 120 Hasan Aliyev str., Baku AZ-0102, Azerbaijan
  • Dunya M. Babanly Azerbaijan State Oil and Industry University, French - Azerbaijani University, 183 Nizami str., Baku AZ-1010, Azerbaijan; Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan https://orcid.org/0000-0002-8330-7854
Keywords: Copper (I) iodide, Antimony iodide, Antimony sulfoiodide, Cu-Sb-S-I system, Phase diagram, Solid solutions

Abstract

The phase equilibria in the Cu-Sb-S-I quaternary system were studied by differential thermal analysis and X-ray phase analysis methods in the CuI-SbSI-SbI3 concentration intervals. The boundary quasi-binary section CuI-SbSI, 2 internal polythermal sections of the phase diagram, as well as, the projection of the liquidus surface were constructed. Primary crystallisation areas of phases, types, and coordinates of non- and monovariant equilibria were determined. Limited areas of solid solutions based on the SbSI (b-phase) and high-temperature modifications of the CuI (α1- and α2- phases) were revealed in the system. The formation of the α1 and α2 phases is accompanied by a decrease in the temperatures of the polymorphic transitions of CuI and the establishment of metatectic (3750C) and eutectoid (2800C) reactions. It was also shown, that the system is characterised by the presence of a wide immiscibility region that covers a significant part of the
liquidus surface of the CuI and SbSI based phases 

Downloads

Download data is not yet available.

Author Biographies

Parvin R. Mammadli, Azerbaijan State Oil and Industry University, French - Azerbaijani University, 183 Nizami str., Baku AZ-1010, Azerbaijan; Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan

PhD student in Chemistry, a
Chemistry Teacher at French-Azerbaijani University,
Azerbaijan State Oil and Industry University, Baku,
Azerbaijan; e-mail: parvin.mammadli@ufaz.az

Vagif A. Gasymov, Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan

PhD in Chemistry, Assistance
Professor, Institute of Catalysis and Inorganic
Chemistry, Azerbaijan National Academy of Sciences,
Baku, Azerbaijan; e-mail: v-gasymov@rambler.ru

Ganira B. Dashdiyeva, Baku Engineering University, 120 Hasan Aliyev str., Baku AZ-0102, Azerbaijan

PhD in Chemistry, Chemistry
Teacher, Baku Engineering University, Baku,
Azerbaijan; e-mail: ganira.dasdiyeva@mail.ru

Dunya M. Babanly, Azerbaijan State Oil and Industry University, French - Azerbaijani University, 183 Nizami str., Baku AZ-1010, Azerbaijan; Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan

DSc in Chemistry, Coordinator
of the Chemistry Department, Lecturer at French-
Azerbaijani University, Senior Researcher of the
Institute of Catalysis and Inorganic Chemistry,
Azerbaijan National Academy of Sciences, Baku,
Azerbaijan; e-mail: dunya.babanly@ufaz.az

References

Ivanov-Shhic A. K., Murin. I. V. Ionika tverdogo tela. V 2-h tomah [Ionic Solid State (in 2 vol.)]. St. Petersburg: Izd-vo S.- Peterb. un-ta Publ. 2000;1: 616. (In Russ.)

Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Tagiyev D. B., Yusibov Y. A.. Some issues of complex studies of phase equilibria and thermodynamic properties in ternary chalcogenide systems involving Emf measurements. Russian Journal of Inorganic Chemistry. 2019;64(13): 1649–1672. https://doi.org/10.1134/s0036023619130035

Peccerillo E., Durose K. Copper–antimony and copper–bismuthchal cogenides — Research pportunities and review for solar photovoltaics. MRS Energy & Sustainability. 2018;5(9): 1–59. https://doi.org/10.1557/mre.2018.10

Loranca-Ramos F. E., Diliegros-Godines C. J., Silva-González R., Pal M. Structural, optical and electrical roperties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition. Applied Surface Science. 2018;427: 1099–1106. https://doi.org/10.1016/j.apsusc.2017.08.027

Chetty R., Bali A., Mallik R. C. Tetrahedrites as thermoelectric materials: an overview. Journal of Materials Chemistry C. 2015;3(48): 12364–12378. https://doi.org/10.1039/C5TC02537K

Van Embden J., Latham K., Duffy N. W., Tachibana Y. Near-infrared absorbing Cu12Sb4S13, and Cu3SbS4 nanocrystals: Synthesis, characterization, and photoelectrochemistry. Journal of the American Chemical Society. 2013;135(31): 11562–11571. https://doi.org/10.1021/ja402702x

Lu X., Morelli D. T., Xia Y., Zhou F., Ozolins V., Chi H. , Zhou X. , Uher C. High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites. Advanced Energy Materials. 2013;3(3): 342–348. https://doi.org/10.1002/aenm.201200650

Ioffe A. F. Semiconductor thermoelements and thermoelectric cooling. London: Infosearch Ltd; 1957.

Pfitzner A. (CuI)2Cu3SbS3 : copper iodide as solid solvent for thiometalate ions. Chemistry – A European Journal. 1997;3(12): 2032–2038. https://doi.org/10.1002/chem.19970031218

Rubish V. M. Electric and dielectric properties of glasses of Cu-Sb-S-I system. Semiconductor Physics, Quantum electronics, and Optoelectronics. 2003;6(1): 76–80. http://dspace.nbuv.gov.ua/handle/123456789/117961

Babanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalkogenides. Russian Journal of Inorganic Chemistry. 2017;62(13): 1703–1729. https://doi.org/10.1134/S0036023617130034

Aliyev Z. S., Musayeva S. S., Babanly M. B. The phase relationships in the Sb-S-I system and thermodynamic properties of the SbSI. Journal of Phase Equilibria and Diffusion. 2017;38(12): 887–896. https://doi.org/10.1007/s11669-017-0601-4

Babanly D. M., Tagiyev D. B. Physicochemical aspects of ternary and complex phases development based on thallium chalcohalides. Chemical Problem. 2018;16 (2): 153–177.

https://doi.org/10.32737/2221-8688-2018-2-153-177

Koyasu S., Umezawa N., Yamaguchi A., Miyauchi. M. Optical properties of single crystalline copper iodide with native defects: Experimental and density functional theoretical investigation. Journal of Applied Physics. 2019;125(11): 115101. https://doi.org/10.1063/1.5082865

Grundmann M., Schein F-L., Lorenz M., Böntgen T., Lenzner J., Wenckstern H. Cuprous iodide – a p-type ransparent semiconductor: history and novel applications. Physica Status Solidi A. 2013;210(9): 1671–1703. https://doi.org/10.1002/pssa.201329349

Amalina M. N., Azilawati Y., Rasheid N. A., Rusop M. The properties of copper (I) iodide (CuI) thin films prepared by mister atomizer at different doping concentration. Procedia Engineering. 2013;56: 731 –736. https://doi.org/10.1016/j.proeng.2013.03.186

Perera V. P. S., Tennakone K. Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Solar Energy Materials and Solar Cells. 2003;79(2): 249–255.

https://doi.org/10.1016/S0927-0248(03)00103-X

Christians J. A., Fung R. C. M., Kamat P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society. 2014;136(2): 758–764. https://doi.org/10.1021/ja411014k

Onodera T., Baba K., Hitomi K. Evaluation of antimony tri-iodide crystals for radiation detectors. Science and Technology of Nuclear Installations. 2018;1532742: 1–7. https://doi.org/10.1155/2018/1532742

Mohan D. B., Philip A., Sunandana C. S. Iodization of antimony thin films: XRD, SEM, and optical studies of nanostructured SbI3. Vacuum. 2008;82(6): 561–565. https://doi.org/10.1016/j.vacuum.2007.08.014

Kępińska M., Starczewska A., Bednarczyk I., Szala J., Szperlich P., Mistewicz K. Fabrication and characterisation of SbI3-opal structures. Materials Letters. 2014;130: 17–20. http://dx.doi.org/10.1016/j.matlet.2014.05.063

Toron B., Szperlich P., Koziol M. SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors - the influence of SbSI nanowires conglomeration on piezoelectric properties. Materials. 2020;13(4): 902. https://doi.org/10.3390/ma13040902

Purusothaman Y., Alluri N. R., Chandrasekhar A., Kim S. J. Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy. 2018;50: 256–265. https://doi.org/10.1016/j.nanoen.2018.05.058

Jesionek M., Toron B., Szperlich P., Binias W., Binias D., Rabiej S., Starczewska A., Nowak M., Kępińska M., Dec J. Fabrication of a new PVDF/SbSI nanowire composite for smart wearable textile. Polymer. 2019;180: 121729. https://doi.org/10.1016/j.polymer.2019.121729

Szperlich P., Toron B. An ultrasonic fabrication method for epoxy resin/SbSI nanowire composites, and their application in nanosensors and nanogenerators. Polymers. 2019;11(3): 479. https://doi.org/10.3390/polym11030479

Shan Y., Li G., Tian G., Han J., Wang Ch., Liu Sh., Du H., Yang Y. Description of the phase transitions of cuprous iodide. Journal of Alloys and Compounds. 2009;477(1-2): 403–406. https://doi.org/10.1016/j.jallcom.2008.10.026

Yashima M., Xu Q., Yoshiasa A., Wada S. Crystal structure, electron density, and diffusion path of the fast-ion conductor copper iodide CuI. Journal of Materials Chemistry. 2006;16(45): 4393–4396. https://doi.org/10.1039/B610127E

Rolsten R. F. Iodide metals and metal iodides. New York: John Wiley and Sons; 1961. 29. Trotter J., Zobel T. The crystal structure of SbI3 and BiI3. Zeitschrift fur Kristallographie - Crystalline Materials. 1966;123(1-6): 67–72. https://doi.org/10.1524/zkri.1966.123.16.67

Ryazantsev T. A., Varekha L. M., Popovkin B. A., Lyakhovitskaya V. A., Novoselova A. V. P-T-x phase diagram of the SbI3-Sb2S3 system. Izv. Akad. Nauk. Neorg. Mater. 1969;5(7): 2196–2197. (in Russ.)

Audzijonis A., Sereika R., Zaltauskas R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun. 2008;147(3-4): 88–89. https://doi.org/10.1016/j.ssc.2008.05.008

Lukaszewicz K., Pietraszko A., Stepen’ Damm Yu, Kajokas A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI, in Phases I, II, and III. Polish Journal of Chemistry. 1997;71: 1852–1857.

Itoh K., Matsunaga H. A Study of the crystal structure in ferroelectric SbSI. Zeitschrift für Kristallographie - Crystalline Materials. 1980;152(1-4): 309–315. https://doi.org/10.1524/zkri.1980.152.14.309

Sakuma T. Crystal structure of b-CuI. Journal of the Physical Society of Japan. 1988;57(2): 565–569. https://doi.org/10.1143/JPSJ.57.565

Mammadli P. R. Physico-chemical interaction of the copper and antimony iodides. Azerbaijan Chemical Journal. 2021;1: 43–49. https://doi.org/10.32737/0005-2531-2021-1-43-47

Published
2021-06-04
How to Cite
Mammadli, P. R., Gasymov, V. A., Dashdiyeva, G. B., & Babanly, D. M. (2021). Phase relations in the CuI-SbSI-SbI3 composition range of the Cu–Sb–S–I quaternary system. Condensed Matter and Interphases, 23(2), 236-244. https://doi.org/10.17308/kcmf.2021.23/3435
Section
Original articles