Cylindrical model of electrochromic colouration of hydrated vanadium pentoxide thin films with point contacts
Abstract
This article analyses experiments on the kinetics of the internal electrochromism of thin (micron) films of hydrated vanadium pentoxide xerogel with point contacts. It describes a cylindrical model of electrochromic colouration, which was used to evaluate the concentration of the colour centres in the initial film and after additional hydrogenation of this film by plasmaimmersion ion implantation.
When we compared the calculated values of the concentration of colour centres with the equilibrium concentration of protons in the xerogel, we saw that the mobility of the protons migrating from the depth of the film to the cathode region, which are involved in the electrochemical reaction, was not a determinant of the electrochromism kinetics.
The rate of electrochromic colouration could be increased by the formation of layered film structures based on hydrated vanadium pentoxide, which have increased overall electron conductivity and, as a consequence, low faradaic resistance of the electrochromic cathodic reaction.
Downloads
References
Monk P. M. S., Mortimer R. J., Rosseinsky D. R. Electrochromism and electrochromic devices. Cambridge University Press; 2007. 512 p. https://doi.org/10.1017/cbo9780511550959
Chernova N. A., Roppolo M., Dillonb A. C, Whittingham M. S. Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry. 2009;19(17) 2526–2552. https://doi.org/10.1039/B819629J
Schneider K., Lubecka M., Czapla A. V2O5 thin films for gas sensor applications. Sensors and Actuators B: Chemical. 2016;236: 970–977. https://doi.org/10.1016/j.snb.2016.04.059
Yakovleva D. S., Malinenko V. P., Pergament A. L., Stefanovich G. B. Electrical and optical properties of thin films of hydrated vanadium pentoxide featuring electrochromic effect. Technical Physics Letters. 2007;33(12): 1022–1024. https://doi.org/10.1134/S1063785007120115
Yakovleva D. S., Pergament A. L., Berezina O. Ya., Boriskov P. P., Kirienko D. A., Pikulev V. B. Internal electrochromism in vanadium pentoxide xerogel films. Materials Science in Semiconductor Processing. 2016;44: 78–84. https://doi.org/10.1016/j.mssp.2016.01.003
Burdyukh S. V., Berezina O. Ya., Pergament A. L., Lugovskaya L. A., Kolyagin Yu. G. Effect of hydrogenation on the optical properties and internal electrochromism in vanadium pentoxide xerogel films. Thin Solid Films. 2018; 656: 22–29. https://doi.org/10.1016/j.tsf.2018.04.026
Livage J. Vanadium pentoxide gels. Chemistry of Materials... 1991;3(4): 578–593. https://doi.org/10.1021/cm00016a006
Bullot J., Gourier D., Gallais O., et al. Thin layers deposited from V2O5 gels. l. A conductivity study. J. Non-Cryst. Solids. 1984;68(1): 123–134.
Barboux P., Baffier N., Morineau R., Livage J. Diffusion protonique dans les xerogels de pentoxyde de vanadium. Solid State Ionics. 1983, v. 9-10, 1073–1080. https://doi.org/10.1016/0167-2738(83)90133-9
Sanchez C., Bobonneau F., Morineau R., Livage J. Semiconducting properties of V2O5 gels. Philosophical Magazine B. 1983;47(3): 279–290. https://doi.org/10.1080/13642812.1983.9728310
Burdyukh S. V., Berezina O. Y., Boriskov P. P., Pergament A. L., Yakovleva D. S. Kinetics of coloration in hydrogenated vanadium pentoxide films under an internal electrochromic effect. Technical Physics Letters. 2018;44(9): 779–782. https://doi.org/10.1134/S1063785018090043
Mazda F. F. Electronic instruments and measurement techniques. New York: Cambridge University Press; 1987., 312 p.]
Bard A. J., Faulkner L. R. Electrochemical methods: fundamentals and applications. Toronto: John Wiley & Sons, Inc.; 2001. 833 p.
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.