Synthesis and properties of nanosized ZnO/wood composite
Abstract
The aim of the study was to synthesise a ZnO/silver birch wood (Bétula péndula) nanocomposite and evaluate its physical and mechanical properties in comparison with an unmodified natural polymer.
Using the sol-gel method, we synthesised almost spherical impurity-free zinc oxide nanoparticles with a predominant particle size of about 20 nm. Amorphous hydrated Zn(OH)2 was impregnated into the wood material at the gel formation stage. It resulted in the reaction of zinc hydroxide decomposition with the formation of ZnO nanoparticles in the wood as a nanoreactor.
The hydrophobic properties of the surface of ZnO/silver birch wood nanocomposite improved significantly (the contact angle of wetting doubled). Its moisture and water resistance decreased (2-5 times and 30%, respectively). The nanocomposite also showed less swelling in the radial (8-10 times) and tangential (2.6-10 times) directions in comparison with natural wood.
Downloads
References
Sunandan B., Joydeep D. Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials. 2009;10(1): 1–18. https://doi.org/10.1088/1468-6996/10/1/013001
Yang Y., Li Y.-Q., Fu S.-Y., Xiao H.-M. Transparentandlight-emittingepoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting. Journal of Physical Chemistry C. 2008; 112 (28): 10553–10558. https://doi.org/10.1021/jp802111q
Dong Y., Chaudhary D., Ploumis C., Lau K. T. Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Composites Part A: Applied Science and Manufacturing. 2011;42(10): 1483–1492. https://doi.org/10.1016/j.compositesa.2011.06.015
Nebukina E. G., Khokhlov E. M., Zaporozhets M. A., Vitukhnovskii A. G., Gubin S. P. A comparative study of the structural and spectral characteristics of ZnO nanoparticles dispersed in isopropanol and polyethylene. Inorganic Materials. 2011;47(2): 143–147. https://doi.org/10.1134/S0020168511020117
Demir M. M., Koynov K., Akbey Ü., Bubeck C., Park I., Lieberwirth I., Wegner G. Optical properties of composites of PMMA and surfacemodified zincite nanoparticles. Macromolecules. 2007;40(4): 1089–1100. https://doi.org/10.1021/ma062184t
Galimova E. M. , Dorozhkin V. P. , Kochnev A. M. Vliyanie mekhanoaktivirovannykh oksida tsinka i ifenilguanidina na kinetiku sernoi vulkanizatsii izoprenovogo kauchuka [Influence of mechanically activated zinc oxide and diphenylguanidine on the kinetics of sulphur vulcanisation of isoprene rubber]. Bulletin of Kazan Technological University. 2011; (19): 144–147. Available at: https://www.elibrary.ru/item.asp?id=17062989 (In Russ.)
Tsang S., Avdeeva A. V., Muradova A. G., Yurtov E. V. Poluchenie nanosterzhnei oksida tsinka khimicheskimi zhidkofaznymi metodami [Preparation of zinc oxide nanorods by chemical liquid-phase methods]. Khimicheskaya Tekhnologiya. 2014;15(12): 715–722. Available at: https://www.elibrary.ru/item.asp?id=22662585 (In Russ.)
Lulu X., Ye X., Baokang D., Zhangning Ye., Chunde J., Qingfeng S., Xiaohong Yu. Insitu anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Materials & Design. 2019;182(15): 108006. https://doi.org/10.1016/j.matdes.2019.108006
Cai T., Shen X., Huang E., Yan Y., Shen X., Wang, F., … Sun Q. Ag nanoparticles supported on MgAl-LDH decorated wood veneer with enhanced flame retardancy, water repellency and antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;598(5): 124878. https://doi.org/10.1016/j.colsurfa.2020.124878
Holy S., Temiz A., Köse Demirel G., Aslan M., Mohamad Amini M. H. Physical properties, thermal and fungal resistance of Scots pine wood treated with nano-clay and several metal-oxides nanoparticles. Wood Material Science and Engineering. 2020;16(1): 1–10. https://doi.org/10.1080/17480272.2020.1836023
Qiu Z., Xiao Z., Gao L., Li J., Wang H., Wang Y., Xie Y. Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles. Composites Science and Technology. 2019;172(1): 43–48. https://doi.org/10.1016/j.compscitech.2019.01.005
Alias S. S., Ismail A. B., Mohamad A. A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. Journal of Alloys and Compounds. 2010;499(2): 231–237. https://doi.org/10.1016/j.jallcom.2010.03.174
Rani S., Suri P., Shishodia P. K., Mehra R. M. Synthesis of nanocrystalline ZnO powder via solgel route for dye-sensitized solar cells. Solar Energy Materials & Solar Cells. 2008;92(12): 1639–1645. https://doi.org/10.1016/j.solmat.2008.07.015
Karpova S. S., Moshnikov V. A., Myakin S. V., Kolovangina E. S. Surface functional composition and sensor properties of ZnO, Fe2O3, and ZnFe2O4. Semiconductors. 2013;47(3): 392–395. https://doi.org/10.1134/S1063782613030123
Lidin R. A., Molochko V. A., Andreeva L. L. Khimicheskie svoistva neorganicheskikh veshchestv [Chemical roperties of inorganic substances]. Moscow: Koloss Publ.; 2006. 480 p. (In Russ.)
Qu X., Jia D. Synthesis of octahedral ZnO mesoscale superstructures via thermal decomposing octahedral zinc hydroxide precursors. Journal of Crystal Growth. 2009;311(4):1223–1228. https://doi.org/10.1016/j.jcrysgro.2008.11.079
Zhu Y., Zhou Y. Preparation of pure ZnO nanoparticles by a simple solid-state reaction method. Applied Physics A. 2008; 92 (2): 275–278. https://doi.org/10.1007/s00339-008-4533-z
Vrublevskaya V. I., Matusevich V. O., Kuznetsova V. V. Substantiation of the interaction mechanism of wood components and water. Bulletin of Higher Educational Institutions. Lesnoi Zhurnal (Forestry Journal). 2017;3(357): 152–163. https://doi.org/10.17238/issn0536-1036.2017.3.152
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.