Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system

  • Yunna L. Tushinova Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation; Banzarov Buryat State University, 24a ul. Smolina, Ulan-Ude 670000, Republic of Buryatia, Russian Federation https://orcid.org/0000-0003-1032-8854
  • Bair G. Bazarov Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation; Banzarov Buryat State University, 24a ul. Smolina, Ulan-Ude 670000, Republic of Buryatia, Russian Federation https://orcid.org/0000-0003-1712-6964
  • Evgeniy V. Kovtunets Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation https://orcid.org/0000-0003-1301-1983
  • Jibzema G. Bazarova Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation https://orcid.org/0000-0002-1231-0116
Keywords: Phase diagram, Triangulation, Solid-state synthesis, Ternary molybdate, Silver molybdate, Rubidium molybdate, Hafnium molybdate, X-ray diffraction analysis

Abstract

Systematic studies of the subsolidus structure of ternary molybdate systems allow expanding the representation of ternary molybdates. In this paper we studied the solid phase interaction in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system for the first time using X-ray phase analysis.
To determine the quasi-binary sections, we use the method of “intersecting cuts”. It helped to reveal the formation of new Rb5Ag1/3Hf5/3(MoO4)6 and Rb3AgHf2(MoO4)6 phases. We also determined their thermal characteristics using differential scanning calorimetry. The ternary molybdate Rb5Ag1/3Hf5/3(MoO4)6 crystallised in the trigonal syngony with the following
unit cell parameters: a = 10.7117(1), c = 38.5464(5) Å (space group R3с, Z = 6). The Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system is characterised by the existence of ten quasi-binary cross sections.
The experimental data obtained in this work complement the information on phase equilibria in condensed ternary systems containing molybdates of tetravalent elements and two different monovalent elements. This provides opportunities for the combination of the compositions of ternary molybdates due to cationic substitutions, which will allow controlling their properties.

Downloads

Download data is not yet available.

Author Biographies

Yunna L. Tushinova, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation; Banzarov Buryat State University, 24a ul. Smolina, Ulan-Ude 670000, Republic of Buryatia, Russian Federation

PhD in Chemistry, Researcher
Fellow, Laboratory of Oxide Systems, Baikal Institute
of Nature Management, Siberian Branch of the Russian
Academy of Sciences (BINM SB RAS), Ulan-Ude,
Russian Federation; e-mail: tushinova@binm.ru

Bair G. Bazarov, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation; Banzarov Buryat State University, 24a ul. Smolina, Ulan-Ude 670000, Republic of Buryatia, Russian Federation

DSc in Physics and Mathematics,
Leading Researcher, Laboratory of Oxide Systems
Baikal Institute of Nature Management, Siberian
Branch of the Russian Academy of Sciences (BINM SB
RAS), Associate Professor at the Department of
Inorganic and Organic chemistry, Banzarov Buryat
State University, Ulan-Ude, Russian Federation;
e-mail: bazbg@rambler.ru

Evgeniy V. Kovtunets, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation

Postgraduate Student, Junior
Researcher, Laboratory of Oxide Systems, Baikal
Institute of Nature Management, Siberian Branch of
the Russian Academy of Sciences, Ulan-Ude, Russian
Federation; e-mail: kovtunets@binm.ru

Jibzema G. Bazarova, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation

DSc in Chemistry, Chief
Scientist Laboratory of Oxide Systems, Baikal Institute
of Nature Management, Siberian Branch of the Russian
Academy of Sciences, Ulan-Ude, Russian Federation;
e-mail jbaz@binm.ru

References

Kozhevnikova N. M., Mokhosoev M. V. Trojnye molibdaty [Triple molybdates]. Ulan-Udje: Izdatel’stvo Burjatskogo gosuniversiteta Publ.; 2000. 298 p. (In Russ.)

Khaikina G. E., Solodovnikov S. F., Basovich O. M., Solodovnikova Z. A., Kadyrova Y. M., Savina A. A., Zolotova E. S., Yudin V. N., Spiridonova T. S. Triple molybdates one-, one - and three(two)valence metals. Chimica Techno Acta. 2015;(2)4: 356–372. https://doi.org/10.15826/chimtech.2015.2.4.032

Dridi W., Zid M. F. Crystal Structure of New One-Dimensional Triple Molybdate Na2K2Cu(MoO4)3. Journal of Structural Chemistry. 2018;59: 1128–1132. https://doi.org/10.1134/S0022476618050153

Bazarova J. G., Chimitova O. D., Grossman V. G., Bazarov B. G., Tushinova Yu. L. Regularities of trigonal triple molybdates formation M5LnHf(MoO4)6 in the systems M2MoO4–Ln2(MoO4)3–Hf(MoO4)2 (M=K, Tl, Rb; Ln=La–Lu). Uspehi sovremennogo estestvoznanija. 2016;10: 14–19. Available at:

https://www.elibrary.ru/item.asp?id=27179218 (In Russ., abstract in Eng)

Spiridonova T. S., Savina A. A., Kadyrova Yu. M., Belykh E. P., Khaikina E. G. New compounds Li3Ba2Bi3(XO4)8 (X = Mo, W): synthesis and properties. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(1): 73–80. https://doi.org/10.17308/kcmf.2021.23/3306

Gulyaeva O. A., Solodovnikova Z. A., Solodovnikov S. F., Yudin V. N., Zolotova E. S., Komarov V. Yu. Subsolidus phase relations and structures of solid solutions in the systems K2MoO4–Na2MoO4–MMoO4 (M = Mn, Zn). Journal of Solid State Chemistry. 2019;272: 148–156. https://doi.org/10.1016/j.jssc.2019.02.010

Vats B. G., Shafeeq M., Kesari S. Triple molybdates and tungstates scheelite structures: Effect of cations on structure, band-gap and photoluminescence properties. Journal of Alloys and Compounds. 2021;865: 158818. https://doi.org/10.1016/j.jallcom.2021.158818

Kozhevnikova N. M., Batueva S. Y. Erbium-doped upconversion phosphor in the Li2MoO4–BaMoO4–Y2(MoO4)3 system. Inorganic Materials. 2020;56(3): 286–291. https://doi.org/10.1134/S0020168520030085

Logvinova A. V., Bazarov B. G., Bazarova J. G. Obtaining iron (III) – containing triple molybdate K5FeZr(MoO4)6 by sol-gel technology. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2020;22(3): 353-359. https://doi.org/10.17308/kcmf.2020.22/2966

Spiridonova T. S., Savina A. A., Kadyrova Y. M., Khaikina E. G., Solodovnikov S. F., Solodovnikova Z. A., Yudin V. N., Stefanovich S. Y. New triple molybdate Rb2AgIn(MoO4)3: synthesis, framework crystal structure and ion-transport behaviour. Acta Crystallographica. Section C, Structural Chemistry. 2018;74(12): 1603–1609. https://doi.org/10.1107/s2053229618014717

Kotova I. Yu., Solodovnikov S. F., Solodovnikova Z. A., Belov D. A., Stefanovich S. Yu., Savina A. A., Khaikina E. G. New series of triple molybdates AgA3R(MoO4)5 (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices. Journal of Solid State Chemistry. 2016;238: 121–128. https://doi.org/10.1016/j.jssc.2016.03.003

Bazarova J. G., Tushinova Yu. L., Grossman V. G., Bazarova Ts. T., Bazarov B. G., Kurbatov R. V. Phase relations in the Me2MoO4–In2(MoO4)3–Hf(MoO4)2, where Me=Li, K, Tl, Rb, Cs. Chimica Techno Acta. 2018;5(3): 126–131. https://doi.org/10.15826/chimtech.2018.5.3.01

Grossman V. G., Bazarova J. G., Bazarov B. G., Molokeev M. S. New triple molybdate K5ScHf(MoO4)6: synthesis, properties, structure and phase equilibria in the M2MoO4–Sc2(MoO4)3–Hf(MoO4)2 (M = Li, K) systems. Journal of Solid State Chemistry. 2020;283: 121143. https://doi.org/10.1016/j.jssc.2019.121143

Tsyrenova G. D. , Solodovnikov S. F. , Popova N. N., Solodovnikova Z. A., Pavlova E. T., Naumov D. Yu., Lazoryak B. I. Phase equilibria in the Cs2MoO4–ZnMoO4–Zr(MoO4)2 system, Crystal structures and properties of new triple molybdates Cs2ZnZr(MoO4)4 and Cs2ZnZr2(MoO4)6. Journal of Physics and Chemistry of Solids. 2015;81: 93–99.

https://doi.org/10.1016/j.jpcs.2015.01.015

Dorzhieva S. G., Bazarov B. G., Bazarova J. G. New molybdates in the Rb2MoO4–MI 2MoO4–Zr(MoO4)2

(MI – Na, K) systems as promising ion-conducting materials. Letters on Materials. 2019;9(1): 17–21. https://doi.org/10.22226/2410-3535-2019-1-17-21

Balsanova L. V. Troinye molibdaty litiya, odnovalentnykh metallov i gafniya [Ternary molybdates of lithium, monovalent metals and hafnium], Cand. chem. sci. diss. Abstr. Irkutsk: Izdatel’stvo Buryatskogo gosuniversiteta; 2004. 23 p. Avalaible at: https://viewer.rusneb.ru/ru/rsl01002728973?page=1&rotate=0&theme=white (In Russ.)

Zaharov A. M. Diagrammy sostojanija dvojnyh i trojnyh system [State diagrams of double and triple systems]. Moscow: Metallurgija Publ.; 1978. 296 p. (InRuss.)

Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User’s Manual. Bruker AXS, Karlsruhe, Germany. 2008.

Kadyrova Yu. M., Solodovnikov S. F., Solodovnikova Z. A., Basovich O. M., Spiridonova T. S., Khajkina E. G. New silver-rubidium double molybdate. Vestnik Burjatskogo gosudarstvennogo universiteta. 2015;(3): 21–25. Available at: https://www.elibrary.ru/item.asp?id=23233676 (In Russ., abstract in Eng.)

Spiridonova T. S., Solodovnikov S. F., Kadyrova Yu. M., Solodovnikova Z. A., Savina A. A., Khaikina E. G. Double molybdates of silver and monovalent metals. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(3): 421–431. https://doi.org/10.17308/kcmf.2021.23/3527

Bazarov B. G., Chimitova O. D., Klevtsova R. F., Tushinova Yu. L., Glinskaya L. A., Bazarova Zh. G. Crystal structure of a new ternary molybdate in the Rb2MoO4-Eu2(MoO4)3-Hf(MoO4)2 system. Journal of Structural Chemistry. 2008;49: 53–57. https://doi.org/10.1007/s10947-008-0008-5

Zolotova E. S., Sergey F. Solodovnikov S. F., Solodovnikova Z. A., Vasiliy N. Yudin V. N., Uvarov N. F., Sukhikh A. S. Selection of alkali polymolybdates as fluxes for crystallization of double molybdates of alkali metals, zirconium or hafnium, revisited crystal structures of K2Mo2O7, K2Mo3O10, Rb2Mo3O10 and ionicconductivity of A2Mo2O7 and A2Mo3O10 (A = K, Rb, Cs). Journal of Physics and Chemistry of Solids. 2021;154: 110054. https://doi.org/10.1016/j.jpcs.2021.110054

Bazarova J. G., Tushinova Y. L., Bazarov B. G. Phase equilibria in systems Ag2MoO4–Ln2(MoO4)3–Hf(MoO4)2, Ln = Nd, Gd, Tb, Dy. BSU bulletin. Chemistry. Physics. 2018;(4): 8–12. https://doi.org/10.18101/2306-2363-2018-4-8-12 (In Russ., abstract in Eng.)

Solodovnikov S. F., Zolotova E. S., Balsanova L. V., Bazarov B. G., Bazarova Zh. G. Phase formation in the Rb2MoO4–Li2MoO4–Hf(MoO4)2 system and the crystal structure of Rb5(Li1/3Hf5/3)(MoO4)6. Russian Journal of Inorganic Chemistry. 2003;48(7): 1084–1088. Available at: https://w w w.elibrar y.ru/item.asp?id=13434803

Klevtsova R. F., Bazarova Zh. G., Glinskaya L. A., Alekseev V. I., Arkhincheeva S. I., Bazarov B. G., Klevtsov P. V., Fedorov K. N. Sintez troinykh molibdatov kaliya, magniya, tsirkoniya i kristallicheskaya struktura [Synthesis of ternary molybdates of potassium, magnesium, zirconium and crystal structure K5(Mg0,5Zr1,5)(MoO4)6]. Journal of Structural Chemistry. 1994;35(3): 286. Available at: https://jsc.niic.nsc.ru/article/16603/ https://jsc.niic.nsc.ru/article/16603/ (In Russ.)

Published
2021-11-24
How to Cite
Tushinova, Y. L., Bazarov, B. G., Kovtunets, E. V., & Bazarova, J. G. (2021). Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(4), 594-599. https://doi.org/10.17308/kcmf.2021.23/3679
Section
Original articles

Most read articles by the same author(s)