SOME PROPERTY FEATURES OF NANOSTRUCTURED MATERIALS AS PARTICIPANTS OF CHEMICAL PROCESSES
Abstract
The article considers a number of features of thermodynamic regularities peculiar to nanostructured materials and the nature of the dependence of the activation energy of processes involving nanostructured materials on the effective particle size of the nanosubstance. Under these conditions, the effective particle size (a) or the number of elementary components of low-atom clusters (atoms, molecules, and radicals) becomes a thermodynamic parameter. In particular, the chemical potential of a substance in case of nanoscale particles is a function of their effective size, or more strictly, a function of the concentrations of vacancies in Ca. The value of Ca, in its turn, is determined by the value of a, the level of the surface energy, and the change in the volume of particles that results from the replacement of the atom by a vacancy in them. The activation energy of processes (EA) in which nanoparticles participate (direct and reverse chemical reactions, adsorption and desorption phenomena as their varieties) become a function of the magnitude of nanostructured particles. A similar phenomenon is characteristic of adsorption centres’ energy activity of diverse nature. It leads to an increase in the role of fluctuations and random processes and to the appearance of a bifurcation point on the dependence EA = f(a), from which various directions of the processes, leading to an apparent scatter of the experimental data, are possible. The observed picture, to a certain extent, is similar to the Heisenberg uncertainty principle. At the same time it has some significant differences.
ACKNOWLEDGEMENTS
The research was carried out at the expense of a grant from the Russian Science Foundation (project No. 18-16-00006).
Downloads
References
2. Vigdorovich V. I., Strelnikova K. O. Protection of Metals and Physical Chemistry of Surfaces, 2012, vol. 48, no. 3, pp. 383-387. DOI: 10.1134/S2070205112030197
3. Vigdorovich V. I., Tsygankova L. E. Fizikokhimiya nanostrukturirovanykh nanomaterialov [Physicochemistry of Nanostructured Nanomaterials]. Tambov, 2012, Publishing house Pershina R. V., 234 p. (in Russ.)
4. Vigdorovich V. I., Tsygankova L. E, Shel N. V, Bernatsky P. N. Teoreticheskie i prikladnye voprosy nanotekhnologii (Sovremennoe sostoyanie i problem) [Theoretical and Applied Problems of Nanotechnology (Current State and Problems)]. Tambov, Publishing house Pershina R. V., 2016, 186 p. (in Russ.)
5. Vigdorovich V. I., Tsygankova L. E. Protection of Metals and Physical Chemistry of Surfaces, 2012, vol. 48, no. 5, pp. 501-507. DOI: 10.1134/S2070205112050152
6. Lidorenko N. S., Chizhik S. P., Gladkikh N. P., Grigorieva L. K., Kuklin R. N. Dokl. An USSR, 1981, vol. 257, no. 5, pp. 1114 - 1116. (in Russ.)
7. Kondepudi D., Prigogine I. Modern Thermodynamics: From Heat Engines to Dissipative. John Wiley & Sons, 1998, 486 p.
8. Hamburg Yu. D. Elektrokhimicheskaya kristallizatsiya metallov i splavov [Electrochemical Crystallization of Metals and Alloys]. Moscow, Janus-K Publ., 1997, 384 p.
9. Vigdorovich V. I., Tsygankova L. E., Shel N. V. Protection of Metals and Physical Chemistry of Surfaces, 2015, vol. 51, no. 4, pp. 567-574. DOI: 10.1134/S2070205115040346
10. Stiyler B. Uravnenie Arreniusa i neravnovesnaya kinetika [The Arrhenius equation and the Unequal Kinetics]. Moscow, Mir Publ., 2000, 175 p. (in Russ.)
11. Voyutskiy S. S. Kurs kolloidnoi khimii [Course of Colloid Chemistry]. Moscow, Khimiya Publ., 1964, 575 p. (in Russ.)
12. Sergeev G. B. Nanokhimiya [Nanochemistry]. Moscow, Publishing house of the Moscow State University, 2007, 336 p. (in Russ.)
13. Nutzenadel C., Zuttel A., Chartouni D Schlapbach L. Electrochem. Solid-State Lett., 1999, vol. 2, no. 1, pp. 30 - 32. DOI: 10.1149/1.1390724
14. Qin X., Gao X. P., Liu H., Yuan D. Y., Gong W. L. Electrochem. Solid-State Lett., 2000. vol. 2, no. 3, pp. 532 – 535. DOI: 10.1149/1.1391200
15 Rajalakshmi N., Dhathathreyan K. S., Govindaraj A. Satishkumar B. C. Electrochem. Acta, 2000, vol. 45, pp. 4511 - 4515. DOI: https://doi.org/10.1016/S0013-4686(00)00510-7
16 Fazle Kibria A. K. M. Mo Y. H., Park K. S., Nahm K. S., Yun M. Y. Int. J. Hydrogen Energy, 2001, vol. 26, pp. 823-829. DOI: https://doi.org/10.1016/S0360-3199(01)00007-6
17 Gundiah G., Govindaraj A., Rajalakshmi N., Dhathathreyan K. S., Rao C. N. R. J. Mater. Chem., 2003, vol. 13, pp. 209 - 213. DOI: 10.1039/b207107j
18. Solodkova L. N, Lyakhov B. F., Lipson A. G, Tsivadze A. Yu. Protection of Metals and Physical Chemistry of Surfaces, 2010, vol. 46, no. 5, pp. 524-527. DOI: 10.1134/S2070205110050035