HYDROGEN PERMEABILITY OF Pd53Cu FILM ALLOYS OF VARIOUS PHASE COMPOSITION
Abstract
The purpose of this work was to reveal the influence of the phase composition and the crystallographic orientation of film samples of Pd-Cu solid solution on the parameters of extraction and injection of atomic hydrogen in aqueous solution of sulphuric acid. The study was carried out using a two-step cathode-anode chronoamperometry method. The films of the Pd53Cu alloy of various thickness were obtained by magnetron sputtering. They were characterised by the same phase (100% of theb -phase of a solid solution) and chemical composition. It was confirmed that during the initial period (£ 4 s, the injection of atomic hydrogen proceeds in a mixed diffusion-phase-boundary regime, which later transforms into a purely diffusion mode. The kinetic and diffusion parameters of the stages of phase-boundary penetration of hydrogen and its subsequent solid-phase diffusion were calculated by the cathodic and anodic current decays. It was established that regardless of the thickness of the sample, an increase in the b phase fraction in the alloy leads to a marked increase in the diffusion coefficient of atomic hydrogen and, consequently, to an increase in the hydrogen permeability constant. The crystallographic orientation only affects the stage of phase-boundary penetration of hydrogen into the film alloy. The data obtained confirm the preferential movement of hydrogen along the grain body rather than over the interphase boundaries
Downloads
References
2. Sloveckij D. I., Chistov E. M., Roshan N. R. Mezhdunarodnyj nauchnyj zhurnal Al'ternativnaja jenergetika i jekologija [International Scientific Journal for Alternative Energy and Ecology (ISJAEE)], 2004, no. 1, pp. 43-46.
3. Fuwu Yan, Lei Xu, Yu Wang J. Renewable and Sustainable Energy Reviews, 2018, vol. 82, №1, pp. 1457-1488. DOI: 10.1016/j.rser.2017.05.227
4. Alessandro Cappelletti, Francesco Martelli J. Hydrogen Energy, 2017, vol. 42, pp. 10513–10523. DOI: 10.1016/j.ijhydene.2017.02.104
5. Zhang Ke, Gade Sabina K., Douglas Way J. J. Membrane Science, 2012, vol. 403-404, pp. 78-83. DOI: 10.1016/j.memsci.2012.02.025
6. Rahimpour M. R., Samimi F., Babapoor A., Tohidian T., Mohebi S. J. Chemical Engineering and Processing, 2017, vol. 121, p. 24-49. DOI: 10.1016/j.cep.2017.07.021
7. Morreale B. D., Ciocco M. V., Howard B. H., Killmeyer R. P., Cugini A. V., Enick R. M. J. Membrane Science, 2004, vol. 241, p. 219-224. DOI: 10.1016/j.memsci.2004.04.033
8. Ramesh Sharma, Yamini Sharma J. Hydrogen Energy, 2015, vol. 40, pp. 14885-14899. DOI: 10.1016/j.ijhydene.2015.09.016
9. Morozov M. M., Potekaev A. I., Klopotov A. A., Markova T. N., Klopotov V. D. Izvestiua vuzov. Chernaya Metallurgiya [Izvestiya. Ferrous Metallurgy], 2015, vol. 58, no. 8. pp. 589 – 596. DOI: 10.17073/0368-0797-2015-8-589-596 (in Russ.)
10. Avdjuhina V. M., Revkevich G. P., Kacnel'son A. A. Poverhnost'. Rentgenovskie, sinhrotronnye i nejtronnye issledovanija [Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques], 2006, № 12, pp. 15-22. (in Russ.)
11. Volkov A. Ju., Kazancev V. A., Kourov N. I., Kruglikov N. A. Phys. Metals Metallogr., 2008, vol. 106, no. 4, pp. 341–352. DOI: https://doi.org/10.1134/S0031918X08100037
12. Volkov A. Ju., Kruglikov N. A. Phys. Metals Metallogr., 2008, vol. 105, no. 2, pp. pp. 202–210. DOI: https://doi.org/10.1007/s11508-008-2013-5
13. Nayebossadri S., Speight J., Book D. J. Chem. Commun., 2015, pр. 1-3. DOI: 10.1039/C5CC04327A
14. Naser A. Al-Mufachi, Robert Steinberger-Wilckens J. Thin Solid Films, 2018, vol. 646, pp. 83-91. DOI: 10.1016/j.tsf.2017.11.032
15. Kostina A. E., Volkov A. Ju. Vektor Nauki, 2017, no. 3(41), pp. 76-83. DOI: 10.18323/2073-5073-2017-3-76-83
16. Ievlev V. M., Maksimenko A. A., Kannykin S. V., Belonogov E. K., Volodin M. S., Roshan N. R. Condensed Matter and Interphases, 2016, vol. 18, no. 4, pp. 521-529. Available at: http://www.kcmf.vsu.ru/resources/t_18_4_2016_009.pdf (in Russ.)
17. Morozova N. B., Vvedenskij A. V., Maksimenko A. A., Dontsov A. I. Condensed Matter and Interphases, 2015, vol. 17, no. 4, pp. 459-469. Available at: http://www.kcmf.vsu.ru/resources/t_17_4_2015_006.pdf (in Russ.)
18. Ievlev V. M., Roshan N. R., Belonogov E. K., Kushhev S. B., Kannykin S. V., Maksimenko A. A., Dontsov A. I., Glazunova Ju. I. Condensed Matter and Interphases, 2012, vol. 14, no. 4, pp. 422-427. Available at: http://www.kcmf.vsu.ru/resources/t_14_4_2012_004.pdf (in Russ.)
19. Morozova N. B., Vvedenskij A. V., Beredina I. P. Condensed Matter and Interphases, 2014, vol. 16, no. 2, pp. 178-188. Available at: http://www.kcmf.vsu.ru/resources/t_16_2_2014_009.pdf (in Russ.)
20. Morozova N. B., Vvedenskij A. V. Condensed Matter and Interphases, 2015, vol. 17, no. 4, pp. 451-458. Available at: http://www.kcmf.vsu.ru/resources/t_17_4_2015_005.pdf (in Russ.)
21. Antonova M. S., Belonogov E. K., Dontsov A. I., Maksimenko A. A. Mezhdunarodnyj nauchnyj zhurnal Al'ternativnaja jenergetika i jekologija [International Scientific Journal for Alternative Energy and Ecology (ISJAEE)], 2011, no. 9, pp. 14-16. (in Russ.)