INTERFACIAL REACTION OF CeO2 FILMS WITH TEXTURED Ni-ALLOY SUBSTRATES

  • Georgy A. Dosovitskiy Ph.D., Researcher at Neo- Chem JSC, Moscow, Russian Federation
  • Vadim A. Amelichev Ph.D., Researcher at SuperOx Company, Moscow, Russian Federation
  • Sergey V. Samoilenkov Ph.D., Chief Technology Officer at SuperOx Company, Moscow, Russian Federation
  • Dominique Eyidi Ph.D., Researcher at Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Bertrand Lacroix Ph.D., Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Fabien Paumier Ph.D., Researcher at Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Dmitry P. Rodionov Dr.Sci., Leading Researcher at Institute of Metals Physics, Ural dpt. of RAS, Ekaterinburg, Russian Federation
  • Rolly J. Gaboriaud Professor, Head of laborattory at Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Andrey R. Kaul Dr. Sci. (Chem.), Professor, Head of laborattory at Chemistry Department, Moscow State University, Moscow, Russian Federation, Chief Scientist at SuperOx Company, Moscow, Russian Federation
Keywords: alloys, oxides, thin films, interfaces, chemical vapor deposition (CVD), epitaxial growth, annealing, electron microscopy, recrystallization, phase equilibria.

Abstract

CeO2 films were deposited on biaxially textured tapes of Ni-W and Ni-Cr-W alloys using MOCVD at 550 °C and subsequently treated in post-deposition annealing at 1000 °C and reducing atmosphere. Upon annealing of the films on the Ni-W alloy substrate, cube texture in the CeO2 films
was formed, and the oxide had an epitaxial interface with the Ni-W alloy substrate as shown by high resolution transmission electron microscopy. Similar annealing of the CeO2 films on the Ni-Cr-W alloy substrate resulted in interaction of the oxide layer with the metal substrate leading to the formation of epitaxial NiO interlayer at the CeO2/Ni-Cr-W interface.

Downloads

Download data is not yet available.

References

1. Hilgenkamp H., Mannhart J. // Rev. Mod. Phys. 2002. V. 74. P. 485—549.
2. Goyal A., Norton D. P., Budai J. D. et al. // Appl. Phys. Lett. 1996. V. 69. P. 1795—1797.
3. Rupich M. W., Li X., Thieme C. et al. // Supercond. Sci. Technol. 2010. V. 23. P. 014015.
4. Clem J. R., Malozemoff A. P. // Supercond. Sci. Technol. 2010. V. 23. P. 034014.
5. Sarma V. S., Eickemeyer J., Mickel C. et al. // Mater. Sci. Eng. A. 2004. V. 380. P. 30—33.
6. Rodionov D. P., Gervasyeva I. V., Khlebnikova Yu.V. et al. // Phys. Met. Metallogr. 2002. V. 93. P. 458—464.
7. Eickemeyer J., Hühne R., Güth A. et al. // Supercond. Sci. Technol. 2010. V. 23. P. 085012.
8. Sarma V. S., Eickemeyer J., Schultz L. et al. // Scripta Mater. 2004. V. 50. P. 953—957.
9. Rodionov D. P., Dosovitskiy G. A., Kaul A. R. et al. // Phys. Met. Metallography. 2010. V. 109. P. 632—642.
10. Tuissi A., Villa E., Zamboni M. et al. // Physica C. 2002. V. 372—376. P. 759—762.
11. Richardson F. D., Jeffes J. H.E. // J. I ron Steel Inst. 1948. V. 160. P. 261—270.
12. Gianni L., Baldini A., Bindi M. et al. // Physica C. 2005. V. 426—431. P. 872—877.
13. Li G., Pu M. H., Sun R. P., et al. // J. Alloys Comp. 2008. V. 466. P. 429—434.
14. Xiong J., Tao B. W., Qin W. F., et al. // Supercond. Sci. Technol. 2008. V. 21. P. 025016.
15. Cantoni C., Christen D. K., Goyal A. et al. // Mat. Res. Soc. Symp. Proc. 2002. V. 689. P. E9.8.1-E9.8.6.
16. Chen S., Wang S. S., Shi K. et al. // Physica C. 2005. V. 419. P. 7—12.
17. Xiong J., Chen Y., Qiu Y. et al. // Supercond. Sci. Technol. 2006. V. 19. P. 1068—1072.
18. Phok S., Bhattacharya R. N. // Phys. Status Solidi A. 2006. V. 203. P. 3734—3742.
19. Stadel O., Schmidt J., Liekefett M. et al. // IEEE Trans. Appl. Supercond. 2003. V. 13. P. 2528—2531.
20. Wang A., Belot J. A., Marks T. J. et al. // Physica C. 1999. V. 320. P. 154—160.
21. Zhao P., Ito A., Tu R. et al. // Surf. Coat. Technol. 2011. V. 205. P. 4079—4082.
22. Becht M., Morishita T. // Chem. Vap. Deposition. 1996. V. 2. P. 191—197.
23. Lee H. G., Lee Y. M., Shin H. S. et al. // Mat. Sci. Eng. B. 2002. V. 90. P. 20—24.
24. Kim H. J., Joo J., Ji B. K. et al. // IEEE Trans. Appl. Supercond. 2003. V. 13. P. 2555—2558.
25. Kim C. J., Kim H. J., Sun J. W. et al. // Physica C. 2003. V. 386. P. 327—332.
26. Harwood M. G. // Nature (London). 1949. V. 164. P. 787.
27. Wold A., Ward R. // J. Am. Chem. Soc. 1954. V. 76. P. 1029—1030.
28. Palmer D. J., Dickens P. G. // Acta Crystallogr. 1979. V. B35. P. 2199—2201.
29. Blednov A. V., Gorbenko O. Yu., Rodionov D. P. et al. // J. Mater. Res. 2010. V. 25. P. 2362—2370.
30. Barrett C. A., Evans E. B. // J. Am. Ceram. Soc. 1964. V. 47. P. 533—533.
31. Graboy I. E., Markov N. V., Maleev V. V. et al. // J. Alloys Comp. 1997. V. 251. P. 318—321.
32. Tomov R. I., Kursumovic A., Kang D. J. et al. // Physica C. 2002. V. 372—376. P. 810—813.
33. Sun E. Y., Goyal A., Norton D. P. et al. // Physica C. 1999. V. 321. P. 29—38.
34. Tidrow S. C., Wilber W. D., Tauber A. et al. // J. Mater. Res. 1995. V. 10. P. 1622—1634.
35. Leonard K. J., Goyal A., Kang S. et al. // Supercond. Sci. Technol. 2004. V. 17. P. 1295—1302.
36. Tretyakov Yu.D. Chemistry of non-stoichiometric oxides (hardcover). Moscow: Lomonosov MSU press, 1974. 364 p.
37. Leonov A. I., Andreeva A. V., Shvaiko-Shvaikovskii V.E. et al. // Izv. Akad. Nauk SSSR, Neorg. Mater. 1966. V. 2. P. 517—523.
38. Dankov P. D. // J. Phys. Chem. (USSR). 1952. V. 26. P. 753—758.
39. Novojilov M. A., Gorbenko O. Y., Graboy I. E. et al. // Appl. Phys. Lett. 2000. V. 76. P. 2041—2043.
Published
2013-09-27
How to Cite
Dosovitskiy, G. A., Amelichev, V. A., Samoilenkov, S. V., Eyidi, D., Lacroix, B., Paumier, F., Rodionov, D. P., Gaboriaud, R. J., & Kaul, A. R. (2013). INTERFACIAL REACTION OF CeO2 FILMS WITH TEXTURED Ni-ALLOY SUBSTRATES. Condensed Matter and Interphases, 15(3), 217-223. Retrieved from https://journals.vsu.ru/kcmf/article/view/900
Section
Статьи