INTERFACIAL REACTION OF CeO2 FILMS WITH TEXTURED Ni-ALLOY SUBSTRATES

  • Georgy A. Dosovitskiy Ph.D., Researcher at Neo- Chem JSC, Moscow, Russian Federation
  • Vadim A. Amelichev Ph.D., Researcher at SuperOx Company, Moscow, Russian Federation
  • Sergey V. Samoilenkov Ph.D., Chief Technology Officer at SuperOx Company, Moscow, Russian Federation
  • Dominique Eyidi Ph.D., Researcher at Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Bertrand Lacroix Ph.D., Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Fabien Paumier Ph.D., Researcher at Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Dmitry P. Rodionov Dr.Sci., Leading Researcher at Institute of Metals Physics, Ural dpt. of RAS, Ekaterinburg, Russian Federation
  • Rolly J. Gaboriaud Professor, Head of laborattory at Pole Polytechnique de Recherche en Ingeniérie, Matériaux et Energétique, Chasseneuil CEDEX, France
  • Andrey R. Kaul Dr. Sci. (Chem.), Professor, Head of laborattory at Chemistry Department, Moscow State University, Moscow, Russian Federation, Chief Scientist at SuperOx Company, Moscow, Russian Federation

Аннотация

CeO2 films were deposited on biaxially textured tapes of Ni-W and Ni-Cr-W alloys using MOCVD at 550 °C and subsequently treated in post-deposition annealing at 1000 °C and reducing atmosphere. Upon annealing of the films on the Ni-W alloy substrate, cube texture in the CeO2 films
was formed, and the oxide had an epitaxial interface with the Ni-W alloy substrate as shown by high resolution transmission electron microscopy. Similar annealing of the CeO2 films on the Ni-Cr-W alloy substrate resulted in interaction of the oxide layer with the metal substrate leading to the formation of epitaxial NiO interlayer at the CeO2/Ni-Cr-W interface.

Скачивания

Данные скачивания пока не доступны.

Литература

1. Hilgenkamp H., Mannhart J. // Rev. Mod. Phys. 2002. V. 74. P. 485—549.
2. Goyal A., Norton D. P., Budai J. D. et al. // Appl. Phys. Lett. 1996. V. 69. P. 1795—1797.
3. Rupich M. W., Li X., Thieme C. et al. // Supercond. Sci. Technol. 2010. V. 23. P. 014015.
4. Clem J. R., Malozemoff A. P. // Supercond. Sci. Technol. 2010. V. 23. P. 034014.
5. Sarma V. S., Eickemeyer J., Mickel C. et al. // Mater. Sci. Eng. A. 2004. V. 380. P. 30—33.
6. Rodionov D. P., Gervasyeva I. V., Khlebnikova Yu.V. et al. // Phys. Met. Metallogr. 2002. V. 93. P. 458—464.
7. Eickemeyer J., Hühne R., Güth A. et al. // Supercond. Sci. Technol. 2010. V. 23. P. 085012.
8. Sarma V. S., Eickemeyer J., Schultz L. et al. // Scripta Mater. 2004. V. 50. P. 953—957.
9. Rodionov D. P., Dosovitskiy G. A., Kaul A. R. et al. // Phys. Met. Metallography. 2010. V. 109. P. 632—642.
10. Tuissi A., Villa E., Zamboni M. et al. // Physica C. 2002. V. 372—376. P. 759—762.
11. Richardson F. D., Jeffes J. H.E. // J. I ron Steel Inst. 1948. V. 160. P. 261—270.
12. Gianni L., Baldini A., Bindi M. et al. // Physica C. 2005. V. 426—431. P. 872—877.
13. Li G., Pu M. H., Sun R. P., et al. // J. Alloys Comp. 2008. V. 466. P. 429—434.
14. Xiong J., Tao B. W., Qin W. F., et al. // Supercond. Sci. Technol. 2008. V. 21. P. 025016.
15. Cantoni C., Christen D. K., Goyal A. et al. // Mat. Res. Soc. Symp. Proc. 2002. V. 689. P. E9.8.1-E9.8.6.
16. Chen S., Wang S. S., Shi K. et al. // Physica C. 2005. V. 419. P. 7—12.
17. Xiong J., Chen Y., Qiu Y. et al. // Supercond. Sci. Technol. 2006. V. 19. P. 1068—1072.
18. Phok S., Bhattacharya R. N. // Phys. Status Solidi A. 2006. V. 203. P. 3734—3742.
19. Stadel O., Schmidt J., Liekefett M. et al. // IEEE Trans. Appl. Supercond. 2003. V. 13. P. 2528—2531.
20. Wang A., Belot J. A., Marks T. J. et al. // Physica C. 1999. V. 320. P. 154—160.
21. Zhao P., Ito A., Tu R. et al. // Surf. Coat. Technol. 2011. V. 205. P. 4079—4082.
22. Becht M., Morishita T. // Chem. Vap. Deposition. 1996. V. 2. P. 191—197.
23. Lee H. G., Lee Y. M., Shin H. S. et al. // Mat. Sci. Eng. B. 2002. V. 90. P. 20—24.
24. Kim H. J., Joo J., Ji B. K. et al. // IEEE Trans. Appl. Supercond. 2003. V. 13. P. 2555—2558.
25. Kim C. J., Kim H. J., Sun J. W. et al. // Physica C. 2003. V. 386. P. 327—332.
26. Harwood M. G. // Nature (London). 1949. V. 164. P. 787.
27. Wold A., Ward R. // J. Am. Chem. Soc. 1954. V. 76. P. 1029—1030.
28. Palmer D. J., Dickens P. G. // Acta Crystallogr. 1979. V. B35. P. 2199—2201.
29. Blednov A. V., Gorbenko O. Yu., Rodionov D. P. et al. // J. Mater. Res. 2010. V. 25. P. 2362—2370.
30. Barrett C. A., Evans E. B. // J. Am. Ceram. Soc. 1964. V. 47. P. 533—533.
31. Graboy I. E., Markov N. V., Maleev V. V. et al. // J. Alloys Comp. 1997. V. 251. P. 318—321.
32. Tomov R. I., Kursumovic A., Kang D. J. et al. // Physica C. 2002. V. 372—376. P. 810—813.
33. Sun E. Y., Goyal A., Norton D. P. et al. // Physica C. 1999. V. 321. P. 29—38.
34. Tidrow S. C., Wilber W. D., Tauber A. et al. // J. Mater. Res. 1995. V. 10. P. 1622—1634.
35. Leonard K. J., Goyal A., Kang S. et al. // Supercond. Sci. Technol. 2004. V. 17. P. 1295—1302.
36. Tretyakov Yu.D. Chemistry of non-stoichiometric oxides (hardcover). Moscow: Lomonosov MSU press, 1974. 364 p.
37. Leonov A. I., Andreeva A. V., Shvaiko-Shvaikovskii V.E. et al. // Izv. Akad. Nauk SSSR, Neorg. Mater. 1966. V. 2. P. 517—523.
38. Dankov P. D. // J. Phys. Chem. (USSR). 1952. V. 26. P. 753—758.
39. Novojilov M. A., Gorbenko O. Y., Graboy I. E. et al. // Appl. Phys. Lett. 2000. V. 76. P. 2041—2043.
Опубликован
2013-09-27
Как цитировать
Dosovitskiy, G. A., Amelichev, V. A., Samoilenkov, S. V., Eyidi, D., Lacroix, B., Paumier, F., Rodionov, D. P., Gaboriaud, R. J., & Kaul, A. R. (2013). INTERFACIAL REACTION OF CeO2 FILMS WITH TEXTURED Ni-ALLOY SUBSTRATES. Конденсированные среды и межфазные границы, 15(3), 217-223. извлечено от https://journals.vsu.ru/kcmf/article/view/900
Раздел
Статьи