Influence of the method of formation a nanosized CoFe2O4/nontronite composite on its structure and properties

Keywords: Nanocomposite, Citrate combustion method, Cobalt ferrite, Aluminosilicate

Abstract

       The aim of the study was to establish the influence of the method of formation of the CoFe2O4/nontronite nanocomposite on its structure and properties.
       Impurity-free nanoparticles of cobalt ferrite CoFe2O4 (XRD), close to spherical in shape, with a predominant particle fraction in the range of 8-20 nm (TEM), were synthesized using the citrate combustion method. The formation of the CoFe2O4/nontronite nanocomposite was carried out by two methods: mechanical mixing of available precursors followed by annealing and combustion of iron-cobalt citrate with the formation of spinel in the presence of nontronite in the reactor.
        The CoFe2O4/nontronite nanocomposite formed by the first method is characterized by the decomposition of natural aluminosilicate aggregates and a higher sorption activity with respect to formaldehyde than the original clay mineral and spinel. The second method of composite formation leads to the formation of coarse-grained silica structures with worse sorption activity in comparison with natural aluminosilicate and CoFe2O4.

Downloads

Download data is not yet available.

Author Biographies

Elena V. Tomina, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Voronezh State University of Forestry and Technologies named after G. F. Morozov 8 Timiryazeva str., Voronezh 394087, Russian Federation

Dr. Sci. (Chem.), Head of the
Department of Chemistry, Voronezh State University
of Forestry and Technologies named after G. F.
Morozov (Voronezh, Russian Federation).

Nataliya A. Khodosova, Voronezh State University of Forestry and Technologies named after G. F. Morozov 8 Timiryazeva str., Voronezh 394087, Russian Federation

Cand. Sci. (Chem.),
Associate Professor at the Department of Chemistry,
Voronezh State University of Forestry and Technologies
named after G. F. Morozov (Voronezh, Russian
Federation).

Alexander A. Sinelnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Head of Laboratory, Department of Materials Science
and Industry of Nanosystems, Voronezh State
University (Voronezh, Russian Federation).

Aleksandr V. Zhabin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Geologo-
Mineralogical), Associate Professor at the Department
of General Geology and Geodynamics, Voronezh State
University (Voronezh, Russian Federation).

Nikolay A. Kurkin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD student, Department of
Materials Science and Industry of Nanosystems,
Voronezh State University (Voronezh, Russian
Federation).

Lyudmila A. Novikova, Voronezh State University of Forestry and Technologies named after G. F. Morozov 8 Timiryazeva str., Voronezh 394087, Russian Federation

Cand. Sci. (Chem.), Associate
Professor at the Department of Chemistry, Voronezh
State University of Forestry and Technologies named
after G. F. Morozov (Voronezh, Russian Federation).

References

Kefeni K. K., Msagati A. M., Mamba B. B. Ferite nanoparticles: synthesis, characterisation and applications in electronic device. Materials Science and Engineering B. 2017;215: 37–55. http://dx.doi.org/10.1016/j.mseb.2016.11.002

Tomina E. V., Mittova I. Y., Stekleneva O. V., Kurkin N. A., Perov N. S., Alekhina Y. A. Microwave synthesis and magnetic properties of bismuth ferrite nanopowder doped with cobalt. Russian Chemical Bulletin. 2020;69(5): 941–946. https://doi.org/10.1007/s11172-020-2852-1

Leila Roshanfekr Rad, Babak Farshi Ghazani, Mohammad Irani, Mohammad Sadegh Sayyafan, Ismaeil Haririan. Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods. Desalination and Water Treatment. 2014;56(12): 1–10. https://doi.org/10.1080/19443994.2014.977960

Tkachenko I. A., Panasenko A. E., Odinokov M. M., Marchenko Y. V. Magnetoactive composite sorbents CoFe2O4–SiO2 Russian Journal of Inorganic Chemistry. 2020;65(8): 1142–1149. https://doi.org/10.1134/S0036023620080173

Mittova I. Ya., Perov N. S., Tomina E. V., Pan’kov V. V., Sladkopevtsev B. V. Multiferroic nanocrystals and diluted magnetic semiconductorsas a base for designing magnetic materials. Inorganic Materials. 2021;57(13): 22–48. https://doi.org/10.1134/S0020168521130033

Rashidi S., Ataie A. One-step synthesis of CoFe2O4 nano-particles by mechanical alloying. Advanced Materials Research. 2014;829: P. 747–751. https://doi.org/10.4028/w w w.scientific.net/AMR.829.747

Agú U. A., Oliva M. I., Marchetti S. G., Heredia A. C., Casuscelli S. G., Crivello M. E. Synthesis and characterization of a mixture of CoFe2O4 and MgFe2O4 from layered double hydroxides: band gap energy and magnetic responses. Journal of Magnetism and Magnetic Materials. 2014;369: 249–259. https://doi.org/10.1016/j.jmmm.2014.06.046

Rao K. S., Nayakulu S. V. R., Varma M. C., Choudary G. S. V. R. K., Rao K. H. Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. Journal of Magnetism and Magnetic Materials. 2018;451(1): 602–608. https://doi.org/10.1016/j.jmmm.2017.11.069

Tomina E. V., Pavlenko A. A., Kurkin N. A. Synthesis of bismuth ferrite nanopowder doped with erbium ions. Condensed Matter and Interphases. 2021;23(1): 93–100. https://doi.org/10.17308/kcmf.2021.23/3309

Rehman F., Sayed M., Khan J. A., Shah L. A., Shah N. S., Khan H. M., Khattak R. Degradation of crystal violet dye by fenton and photo-fenton oxidation processes. Zeitschrift Fur Physikalische Chemie. 2018;232(12): 1771–1786. https://doi.org/10.1515/zpch-2017-1099

Indu Sharma Somnath, Kotnala R. K., Singh M., Kumar Arun, Dhiman Pooja, Singh Virender Pratap, Verma Kartikey, Kumar Gagan. Structural magnetic and mössbauer studies of Nd-doped Mg-Mn ferrite nanoparticles. Journal of Magnetism and Magnetic Materials. 2017;444: 77–86. https://doi.org/10.1016/j.jmmm.2017.08.017

Tsipursky S. I., Drits V. A., Chekin S. S. Revealing the structural ordering of nontronites by the oblique texture electron diffraction method. Proceedings of the Academy of Sciences of the USSR, geological series. 1978;10: 105-113. (In Russ.)

Al-Ahmed A. (Ed.). Advanced applications of micro and nano clay II: synthetic polymer composites. In: Materials Research Foundations. Millersville, PA: Material Research Forum LLC; 2022. 290 p. https://doi.org/10.21741/9781644902035

Bel’chinskaya L. I., Khodosova N. A., Novikova L. A., Strel’nikova O. Y., Roessner F., Petukhova G. A., Zhabin A. V. Regulation of sorption processes in natural nanoporous aluminosilicates. 2. Determination of the ratio between active sites Protection of Metals and Physical Chemistry of Surfaces. 2016:52(4); 599– 606. https://doi.org/10.1134/s2070205116040055

Khodosova N. A., Tomina E. V., Belchinskaya L. I., Zhabin A. V., Kurkin N. A., Volkov, A. S. Physical and chemical characteristics of the nanocomposite nontronite/CoFe2O4 sorbent. Sorbtsionnye i khromatograficheskie protsessy. 2021:21(4); 520–528. (In Russ., abstract in Eng.). https://doi.org/10.17308/sorpchrom.2021.21/3636

JCPDC PCPDFWIN: A Windows retrieval/display program for accessing the ICDD PDF – 2 Data Base, International Centre for Diffraction Data, 1997.

Brandon D., Kaplan W.D. Microstructural characterization of materials. John Wiley & Sons Ltd; 1999. 409 p. https://doi.org/10.1002/9780470727133

The list of substances, products, production processes, domestic and natural factors that are carcinogenic to humans. GN 1.1.029-98. Moscow: Goskomsanepidnadzor Russia; 1995. 17 p.

Stefan W: The Great Reference Book of Lapis Minerals. All minerals from A to Z and their properties. 5th edition completely revised and enlarged. Weise, Munich 2008, ISBN 978-3-921656-70-9.

Nurizyanov R. M. Geology minerals and rocks. Almetyevsk: Almetyevsk State Oil Institute Publ., 2012. 84 p. (In Russ.)

Bergaya F., Lagaly G. Handbook of Clay Science. Developments in Clay Science 5. Amsterdam: Elsevier; 2013. 787 p. Available at: https://www.sciencedirect.com/bookseries/developments-in-clay-science/vol/5/suppl/C

Gorshkov V. S., Savelyev V. G., Fedorov N. F. Physical chemistry of silicates and other refractory compounds. Moscow: Vysshaya shkola Publ.; 1988. 400 p.

Krupskaya V. V., Zakusin S. V., Tyupina E. A., Dorzhieva O. V., Chernov M. S., Bychkova Ya. V. Transformation of structure and adsorption properties of montmorillonite under thermochemical treatment. Geochemistry International. 2019;57(3): 314-330. https://doi.org/10.1134/s0016702919030066

Published
2022-08-26
How to Cite
Tomina, E. V., Khodosova, N. A., Sinelnikov, A. A., Zhabin, A. V., Kurkin, N. A., & Novikova, L. A. (2022). Influence of the method of formation a nanosized CoFe2O4/nontronite composite on its structure and properties. Condensed Matter and Interphases, 24(3), 379-386. https://doi.org/10.17308/kcmf.2022.24/9861
Section
Original articles

Most read articles by the same author(s)