Computer model of Cu-Ni-Mn isobaric phase diagram: verification of crystallisation intervals and change of the three-phase reaction type

  • Anna E. Zelenaya Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 8 Sakhyanovoy str., Ulan-Ude 670047, Russian Federation https://orcid.org/0000-0001-5232-8567
  • Vasily I. Lutsyk Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 8 Sakhyanovoy str., Ulan-Ude 670047, Russian Federation https://orcid.org/0000-0002-6175-0329
  • Viktor D. Baldanov Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 8 Sakhyanovoy str., Ulan-Ude 670047, Russian Federation https://orcid.org/0000-0002-3946-9565
Keywords: Phase diagram, Computer simulation, Cu-Ni-Mn system, Change of three-phase reaction type, Crystallisation interval, Microstructure

Abstract

       The purpose of article was to show the possibilities of spatial computer models of phase diagrams in solving of the problems of digitalization of materials science. The study of the high-temperature part of the isobaric phase diagram for the Cu–Ni–Mn system was carried out taking into account two polymorphic modifications of manganese (dMn and gMn). For a better understanding of the phase diagram structure, at the first stage, its prototype was developed with increased temperature and concentration intervals between binary points with the preservation of topological structure, which is then modified into the model of phase diagram corresponding to the real system. The phase diagram of Cu-Mn-Ni system above 800°C
was formed by three pairs of liquidus, solidus, and transus surfaces and three ruled surfaces with a horizontal arrangement of the forming segment.
           Experimental part: the effect of changing the peritectic equilibrium (L + dMn → gMn) to the metatectic one (dMn → L + gMn) was revealed. The crystallisation features at the change of three-phase transformation type were considered, the surface of change of melt mass increment sign and the vertical mass balances for the three-phase region L + dMn + gMn were constructed. The surface of two-phase reaction, on which the change of three-phase reaction type occurs, is a ruled surface and is determined, using the algorithm for calculating the change in sign of the mass increment of liquid phase. Threephase region, taking into account the surface of type change of three-phase reaction, is divided into six concentration fields when projecting into the triangle of compositions. Four concentration fields differ in the crystallisation stages and the
formed set of microstructures. Isothermal sections were calculated in the temperature range between two minimum points arranged in the Cu–Mn and Mn–Ni systems at zero crystallisation interval between the valleys of the liquidus and solidus surfaces and taking into account the crystallisation interval.
          The spatial model of phase diagram greatly expands the possibilities of computer-aided design of materials. In particular, a solution for the problem of type changing of three-phase reaction was obtained, which cannot be realised either by thermodynamic calculations or by calculations from first principles.

Downloads

Download data is not yet available.

Author Biographies

Anna E. Zelenaya, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 8 Sakhyanovoy str., Ulan-Ude 670047, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher of the Sector of Computer Materials
Design, Institute of Physical Materials Science,
Siberian Branch of the Russian Academy of Sciences
(Ulan-Ude, Russian Federation)

Vasily I. Lutsyk, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 8 Sakhyanovoy str., Ulan-Ude 670047, Russian Federation

Dr. Sci. (Chem.), Head of the Sector
of Computer Materials Design, Institute of Physical
Materials Science, Siberian Branch of the Russian
Academy of Sciences (Ulan-Ude, Russian Federation)

Viktor D. Baldanov, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 8 Sakhyanovoy str., Ulan-Ude 670047, Russian Federation

post-graduate student of the
Sector of Computer Materials Design, Institute of
Physical Materials Science, Siberian Branch of the
Russian Academy of Sciences (Ulan-Ude, Russian
Federation)

References

Akash K., Mani Prabu S. S., Gustmann T., Jayachandran S., Pauly S., Palani I. A. Enhancing the life cycle behaviour of Cu–Al-Ni shape memory alloy bimorph by Mn addition. Materials Letters. 2018;226: 55–58. https://doi.org/10.1016/j.matlet.2018.05.008

Gera D., Santos J., Kiminami C. S., Gargarella P. Comparison of Cu–Al–Ni–Mn–Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy. Transactions of Nonferrous Metals Society of China. 2020;30(12): 3322–3332. https://doi.org/10.1016/S1003-6326(20)65464-4

Kang H., Yang Z., Yang X., Li J., He W., Chen Z., Guo E., Zhao L.-D., Wang T. Preparing bulk Cu–Ni-Mn based thermoelectric alloys and synergistically improving their thermoelectric and mechanical properties using nanotwins and nanoprecipitates. Materials Today Physics. 2021;17: 100332. https://doi.org/10.1016/j.mtphys.2020.100332

Binary alloy phase diagrams. Vol. 1. Massalski T. B. (ed.). Ohio: American Society for Metals, Metals Park; 1986. 1100 p.

State diagrams of binary metal systems*. Vol. 2. Ljakishev N. P. (ed.). Moscow: Mashinostroenie Publ.; 1997. 1024 p. (In Russ.)

Hellawell A., Hume-Rothery W. The construction of alloys of iron and manganese with transition elements of the first long period. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1957;249: 417–459. http://doi.org/10.1098/rsta.1957.0004

Wachtel E., Terzieff P., Bahle J. Aufbau und magnetische Eigenschaften manganreicher Cu–Mn– und Mn–Sn-Legierungen. Monatshefte für Chemie. 1986;117(12): 1349–1366. http://doi.org/10.1007/bf00810745

Kaufman L. Coupled phase diagrams and thermochemical data for transition metal binary systems-VI. Calphad. 1979;3(1): 45–76. https://doi.org/10.1016/0364-5916(79)90020-8

Lewin K. , Sichen D. , Seetharaman S. Thermodynamic study of the Cu–Mn system. Scandinavian Journal of Metallurgy. 1993;22(6): 310–316. Available at: https://www.researchgate.net/publication/262068679_Thermodynamic_study_of_the_Cu–Mn_system

Miettinen J. Thermodynamic description of the Cu–Mn–Zn system in the copper-rich corner. Calphad. 2004;28(3): 313–320. https://doi.org/10.1016/j.calphad.2004.09.003

Turchanin M. A., Agraval P. G., Abdulov A. R. Phase equilibria and thermodynamics of binary copper systems with 3d-metals. IV. Copper – Manganese system. Powder Metallurgy and Metal Ceramics. 2006;45(11–12): 569–581. https://doi.org/10.1007/s11106-006-0121-y

Wang C. P., Liu X. J., Ohnuma I., Kainuma R., Ishida K. Thermodynamic assessments of the Cu–Mn–X (X: Fe, Co) systems. Journal of Alloys and Compounds. 2007;438(1–2): 129–141. https://doi.org/10.1016/j.jallcom.2006.08.018

He C., Du Y., Chen H.-L., Liu S., Xu H., Ouyang Y., Liu Z.-K. Thermodynamic modeling of the Cu–Mn system supported by key experiments. Journal of Alloys and Compounds. 2008;457(1–2): 233–238. https://doi.org/10.1016/j.jallcom.2007.03.041

Cui S., Jung I.-H. Thermodynamic modeling of the Cu–Fe–Cr and Cu–Fe–Mn systems. Calphad. 2017;56: 241–259. https://doi.org/10.1016/j.calphad.2017.01.004

Binary alloy phase diagrams. Vol. 2. Massalski T. B. (ed.). Ohio: American Society for Metals, Metals Park; 1986. 2224 p.

Gokcen N. A. The Mn–Ni (manganese-nickel) system. Journal of Phase Equilibria. 1991;12(3): 313–321. https://doi.org/10.1007/BF02649919

Miettinen J. Thermodynamic solution phase data for binary Mn–based systems. Calphad. 2001;25(1): 43–58. https://doi.org/10.1016/S0364-5916(01)00029-3

Guo C., Du Z. Thermodynamic optimization of the Mn–Ni system. Intermetallics. 2005;13(5): 525–534. https://doi.org/10.1016/j.intermet.2004.09.002

an Mey S. Thermodynamic re-evaluation of the Cu–Ni system. Calphad. 1992;16(3): 255–260. https://doi.org/10.1016/0364-5916(92)90022-P

Turchanin M. A., Agraval P. G., Abdulov A. R. Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VI. Copper-nickel system. Powder Metallurgy and Metal Ceramics. 2007;46: 467–477. https://doi.org/10.1007/s11106-007-0073-x

Tesfaye F., Vaajamo I., Hamuyuni J., Lindberg D., Taskinen P., Hupa L. Experimental investigation and thermodynamic re-assessment of the ternary coppernickel-lead system. Calphad. 2018;61: 148–156. https://doi.org/10.1016/j.calphad.2018.03.006

Parravano N. Alloys of nickel, manganess, and copper. Gazzetta Chimica Italiana. 1913;42: 385–394.

Parravano N. Ternary alloys of iron-nickelmanganese,nickel-manganese-copper, and ironmanganese-copper. Intern. Z. Metallog. 1913;4: 171–202.

Anosov V. Ja., Pogodin S. A. Fundamentals of physical and chemical analysis. Moscow: Nauka Publ.; 1976. 504 p. (In Russ.)

Sun W., Xu H., Du Y., Liu S., Chen H., Zhang L.,Huang B.-Y. Experimental investigation and thermodynamic modeling of the Cu–Mn–Ni system. Calphad. 2009;33(4): 642–649. https://doi.org/10.1016/j.calphad.2009.07.003

Pikunov M. V., Sidorov E. V. Phase diagrams of three-component systems corresponding to unbounded solid solutions with a temperature extremum. Steel in Translation. 2008;38(1): 1–4. https://doi.org/10.3103/S0967091208010014

Palatnik L. S., Landau A. I. Phase Equilibria in Multicomponent Phase Diagrams. New York: Holt Rinehart and Winston, Inc.; 1964. 454 p.

Petrov D. A. Binary and ternary systems. Мoscow: Metallurgija Publ.; 1986. 256 p. (In Russ.)

Pikunov M. V., Sidorov E. V. Structure of the phase diagram of the Cu–Ni–Mn system. Steel in Translation. 2008;38(5): 351–354. https://doi.org/10.3103/S096709120805001X

Bazhenov V. E., Pikunov M. V. Temperatureminimum line in the Cu–Ni–Mn phase diagram. Steel in Translation. 2010;40(3): 225–228. https://doi.org/10.3103/S0967091210030071

Pashkov A. I. Research and development of technology for obtaining alloys of the Cu–Mn–Ni system by mechanical alloying for high-temperature soldering*. Cand. tech. sci. diss. Abstr. Moscow: 2009. 28 p. (In Russ.).

Available at: https://www.dissercat.com/content/issledovanie-i-razrabotka-tekhnologii-polucheniyasplavov-

sistemy-Cu-Mn–ni-metodom-mekhanich

Bazhenov V. E. The study of crystallization processes of ternary alloys in order to assess their tendency to non-equilibrium crystallization*. Cand. tech. sci. diss. Abstr. Moscow: 2013. 25 p. (In Russ.). Available

at: https://www.dissercat.com/content/izucheniekristallizatsionnykh-protsessov-troinykh-splavov-stselyu-

otsenki-ikh-sklonnosti-k

Bazhenov E. V. On the Cu–Ni–Mn system state diagram. Izvestiya Vuzov. Tsvetnaya Metallurgiya = Izvestiya. Non-Ferrous Metallurgy. 2013;(1): 49–55. (In Russ., abstract in Eng.). https://doi.org/10.17073/0021-

-2013-1-49-55

Miettinen J. Thermodynamic description of the Cu–Mn–Ni system at the Cu–Ni side. Calphad. 2003;27(2): 147–152. https://doi.org/10.1016/j.calphad.2003.08.003

Turchanin M. A., Velikanova T. Y., Agraval P. G., Abdulov A. R., Dreval’ L. A. Thermodynamic assessment of the Cu–Ti–Zr system. III. Cu–Ti–Zr system. Powder Metallurgy and Metal Ceramics. 2008;47: 586–606. https://doi.org/10.1007/s11106-008-9062-y

Ivanchenko V. G., Pryadko T. V., Gavrylenko I. S., Pogorelaya V. V. Phase equilibria in the Ti–TiMn2–ZrMn2–Zr partial system. Chemistry of Metals and Alloys. 2008;1: 67–72. https://doi.org/10.30970/cma1.0004

Lutsyk V. I., Zelenaya A. E., Zyryanov A. M. Multicomponent systems simulation by the software of “Diagrams Designer”. Journal of International Scientif ic Publications: Materials, Methods & Technologies. 2008;2: 176–184. Available at: https://www.scientific-publications.net/download/materialsmethods-and-technologies-2008.pdf

Vorob’eva V. P., Zelenaya A. E., Lutsyk V. I., Lamueva M. V. A 3D computer model of the CaO–MgO–Al2O3 T-x-y diagram at temperatures above 1300 °C. Condensed Matter and Interphases. 2021;23(3): 380–386. https://doi.org/10.17308/kcmf.2021.23/3529

Lutsyk V. I., Vorob’eva V. P. Investigation of the conditions for changing the type of three-phase transformation in the Ti–Ir–Ru system. Perspektivnye materialy = Perspective materials. 2011;(S13): 191–198.

(In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=17635587

Lutsyk V. I., Zelenaya A. E., Zyryanov A. M. Specific features of the crystallization of melts in systems with a transition from syntectic equilibrium to monotectic equilibrium. Crystallography Reports. 2009;54(7): 1300–1307. https://doi.org/10.1134/S1063774509070281

Kainzbauer P., Richter K. W., Effenberger H. S., Giester G., Ipseret H. The ternary Bi-Mn–Sb phase diagram and the crystal structure of the ternary* phase Bi0.8MnSb0.2. Journal of Phase Equilibria and Diffusion. 2019;40: 462–481. https://doi.org/10.1007/s11669-019-00719-x

Florian G., Gabor A. R., Nicolae C. A. … Rotaru P. Thermomechanical, calorimetric and magnetic properties of a Ni–Ti shape-memory alloy wire. Journal of Thermal Analysis and Calorimetry. 2020;140(2): 147–527. https://doi.org/10.1007/s10973-019-08869-3

Li H., Ruan J., Ueshima N., Oikawa K. Experimental investigations of fcc/bcc phase equilibria in the Cr–Mn–Ni ternary system. Intermetallics. 2020;127: 106994. https://doi.org/10.1016/j.intermet.2020.106994

Ruan J., Ueshima N., Li H., Oikawa K. Phase equilibria, martensitic transformations and deformation behaviors of the subsystem of Cantor alloy-low-cost Fe–Mn–Cr alloys. Materialia. 2021;20: 101231. https://doi.org/10.1016/j.mtla.2021.101231

Published
2022-11-01
How to Cite
Zelenaya, A. E., Lutsyk, V. I., & Baldanov, V. D. (2022). Computer model of Cu-Ni-Mn isobaric phase diagram: verification of crystallisation intervals and change of the three-phase reaction type. Condensed Matter and Interphases, 24(4), 466-474. https://doi.org/10.17308/kcmf.2022.24/10551
Section
Original articles