Моделирование оптических поляризационных процессов на лазерно-модифицированном титане с пленкой поливинилового спирта
Аннотация
Исследованы оптические спектры поверхностных плазмон-поляритонов на лазерно-модифицированном титане с осажденной микронной полимерной пленкой поливинилового спирта (ПВС).
Метаповерхность титана создавалась лазерным фемтосекундным воздействием l = 1.035 мк и длительностью t = 280 фс с линейной и круговой поляризацией излучения. Пакеты лазерных импульсов точечно наносились на поверхность шагом через 100 мк через ti = 25–750 мс. При линейной поляризации излучения на скрайбированной поверхности титана возникали дорожки сканов «ripple» («рябь») структур с плотностью штрихов до N ~1200 мм–1. Установлено, что при круговой поляризации воздействующего излучения на титан, возникали абляционные точечные каверны с лепестковыми кольцевыми «ripple» нано-микроструктурами вдоль линии распространения импульсов луча.
Проведено математическое моделирование действительной Re (e) и мнимой Im (e) диэлектрических проницаемостей и установлено практически полное совпадение спектральных параметров в спектрах отражения поляризованного излучения. При анализе спектров так же было установлено наличие максимума поглощения в ИК-области, обусловленного присутствием пленки ПВС.
Скачивания
Литература
Y., Shen X. Femtosecond laser-induced large area of periodic structures on chalcogenide glass via twice laser direct-writing scanning process. Optics & Laser Technology. 2020;124: 105977. https://doi.org/10.1016/j.optlastec.2019.105977
Messaddeq S. H., Vallée R., Soucy P., Bernier M., El-Amraoui M., Messaddeq Y. Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation. Optics Express. 2012;20(28): 29882–29889. https://doi.org/10.1364/OE.20.029882
Lim H. U., Kang J., Guo C., Hwang T. Y. Femtosecond laser-induced dual periodic structures on Ni. Frontiers in Optics. 2017. Washington, D.C.: OSA; 2017. https://doi.org/10.1364/FIO.2017.JTu3A.41
Simões J. G. A. B., Riva R., Miyakawa W. Highspeed laser-induced periodic surface structures (LIPSS) generation on stainless steel surface using a nanosecond pulsed laser. Surface and Coatings Technology. 2018;344: 423–32. https://doi.org/10.1016/j.surfcoat.2018.03.052
Bonse J, Kirner S V., Krüger J. Laser-induced periodic surface structures (LIPSS). In: Handbook of laser micro- and nano-engineering. Springer Nature; 2020. pp. 1–59. https://doi.org/10.1007/978-3-319-69537-2_17-2
Lorenz P., Zagoranskiy I., Ehrhardt M., Zimmer K. P. Laser-induced large area sub-µm and nanostructuring of dielectric surfaces and thin metal layer. In: Proc. SPIE 10906, Laser-based Micro- and Nanoprocessing XIII, 109060T, 4 March 2019. https://doi.org/10.1117/12.2510206
Silvennoinen M., Hasoň S., Silvennoinen R. Optical resonance on LIPSS sensed by polarized light. In: Proc. SPIE 9066, Eleventh International Conference on Correlation Optics, 90660X, 17 December 2013. https://doi.org/10.1117/12.2047104
Rathmann L., Beste L. H., Radel T. Laser based process chain to use LIPSS on forming tools. Surface and Coatings Technology. 2021;426: 127761. https://doi.org/10.1016/j.surfcoat.2021.127761
Romano J. M., Garcia-Girón A., Penchev P., Dimov S. S. Durability and wear resistance of LIPSS. In: Proc. Volume 11674, Laser-based Micro- and Nanoprocessing XV; 116740N. 2021. p. 19. https://doi.org/10.1117/12.2584010
Karkantonis T., Gaddam A., See T. L., Joshi S. S., Dimov S. Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications. Surface and Coatings Technology 2020;399: 126166. https://doi.org/10.1016/j.surfcoat.2020.126166
Gazizova M. Y., Smirnov N. A., Kudryashov S. I., … Prokopenko N. A. Correlation of the tribological properties of LIPSS on TiN surface with 3D parameters of roughness. IOP Conference Series: Materials Science and Engineering. 2021;1014(1): 012014. https://doi.org/10.1088/1757-899X/1014/1/012014
Exir H., Weck A. Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium. Surface and Coatings Technology 2019;378: 124931. https://doi.org/10.1016/j.surf-coat.2019.124931
Orazi L., Pelaccia R., Mishchenko O., Reggiani B., Pogorielov M. Fast LIPSS based texturing process of dental implants with complex geometries.CIRP Annals. 2020;69(1): 233–236. https://doi. org/10.1016/j.cirp.2020.04.065
Orazi L., Pogorielov M., Deineka V., … Reggiani B. Osteoblast cell response to LIPSS-modified Ti-implants. Key Engineering Materials. 2019;813: 322–327. https://doi.org/10.4028/www.scientific.net/KEM.813.322
Khorkov K. S., Kochuev D. A., Dzus M. A., Prokoshev V. G. Wettability surface control on stainless steel by LIPSS formation. Journal of Physics: Conference Series. 2021; 1822(1): 012010. https://doi.org/10.1088/1742-6596/1822/1/012010
Zyubin A., Kon I., Tcibulnikova A., … Demin M. Numerical FDTD-based simulations and Raman experiments of femtosecond LIPSS. Optics Express. 2021;29(3): 4547–4558. https://doi.org/10.1364/oe.413460
Vorobyev A. Y., Guo C. Femtosecond laser nanostructuring of metals. Optics Express. 2006;14(6): 2164. https://doi.org/10.1364/OE.14.002164
Zhang W., Cue N., Yoo K. M. Emission linewidth of laser action in random gain media. Optics Letters. 1995;20(9): 961. https://doi.org/10.1364/OL.20.000961
Drachev V. P., Chettiar U. K., Kildishev A. V., Yuan H.-K., Cai W., Shalaev V. M. The Ag dielectric function in plasmonic metamaterials. Optics Express. 2008;16; 1186–1195. https://doi.org/10.1364/OE.16.001186
De Sio L., Placido T., Comparelli R., … Bunninge T. J. Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics. Progress in Quantum Electronics. 2015;41: 23–70. https://doi.org/10.1016/j.pquantelec.2015.03.001
Chauhan M., Kumar Singh V. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Optical Fiber Technology. 2021; 64. https://doi.org/10.1016/j.yofte.2021.102580
Misra S., Zhang D., Qi Z., … Wang H. Morphology control of self-assembled three-phase Au-BaTiO3- ZnO hybrid metamaterial for tunable optical properties. Crystal Growth and Design. 2020;20(9): 6101–8. https://doi.org/10.1021/acs.cgd.0c00801
Jia X., Wang X. Optical fishnet metamaterial with negative, zero, positive refractive index and nearly perfect absorption behavior at different frequencies. Optik. 2019;182: 464–468. https://doi.org/10.1016/j.ijleo.2019.01.066
Kim J., Han K., Hahn J. W. Selective dual-band metamaterial perfect absrber for infrared stealth technology. Scientific Reports. 2017;7(1): 6740. https://doi.org/10.1038/s41598-017-06749-0
Pralle M. U., Moelders N., McNeal M. P., Puscasu I., Greenwald A. C., Daly J. T., Johnson E. A. Photonic crystal enhanced narrow-band infrared emitters. Applied Physics Letters. 2002;81(25): 4685–4687. https://doi.org/10.1063/1.1526919
Sikdar D., Pendry J. B., Kornyshev A. A. Nanoparticle meta-grid for enhanced light extraction from light- mitting devices. Light: Science and Applications. 2020;9(1): 1–11. http://dx.doi.org/10.1038/s41377-020-00357-w
Naik G. V., Kim J., Boltasseva A. Oxides andnitrides as alternative plasmonic materials in the optical range. Optical Materials Express. 2011;1(6): 1090. https://doi.org/10.1364/OME.1.001090
Sakurai A., Bo Z., Zhang Z. Prediction of the resonance condition of metamaterial emitters and absorbers using LC circuit model. In: International Heat Transfer Conference 15, August, 10-15, 2014, Kyoto, Japan. 2014. pp. 7067–7076. https://doi.org/10.1615/IHTC15.rad.009012
Wei D., Hu C., Chen M., … Xie C. Optical modulator based on the coupling effect of different surface plasmon modes excited on the metasurface. Optical Materials Expres.s 2020;10(1): 105–118. https://doi.org/10.1364/ome.382116
Tao H., Bingham C. M., Strikwerda A. C., … Averitt R. D. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Physical Review B – Condensed Matter and Materials Physics. 2008;78: 241103. https://doi.org/10.1103/PhysRevB.78.241103
Alves F., Kearney B., Grbovic D., Karunasiri G. Narrowband terahertz emitters using metamaterial films. Optics Express. 2012;20(19): 21025–21032. https://doi.org/10.1364/OE.20.021025
Lazzini G., Romoli L., Tantussi F., Fuso F. Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Optics and Laser Technology. 2018;107: 435–442. https://doi.org/10.1016/j.optlastec.2018.06.023
Khorasaninejad M., Chen W. T., Devlin R. C., Oh J., Zhu A. Y., Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subw aveleng thre solutionimaging. Science . 2016;352(6290): 1190–1194. https://doi.org/10.1126/science.aaf6644
Öktem B., Pavlov I., Ilday S., Kalaycıoğlu H., Rybak A., Yavaş S., Erdoğan M., Ömer F. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics. 2013;7(11): 897–901. https://doi.org/10.1038/nphoton.2013.272
Dostovalov A. V., Korolkov V. P., Babin S. A. Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties. Applied Physics B: Lasers and Optics. 2017;123: 30. https://doi.org/10.1007/s00340-016-6600-z
Emmony D. C., Howson R. P., Willis L. J. Laser mirror damage in germanium at 10.6 μm. AppliedPhysics Letters. 1973;23(11): 598–600. https://doi.org/10.1063/1.1654761
Sipe J. E., Young J. F., Preston J. S., van Driel H. M. Laser-induced periodic surface structure. I. Theory. Physical Review B. 1983;27(2): 1141–1154. https://doi.org/10.1103/PhysRevB.27.1141
Maier S. A. Plasmonics: fundamentals and applications. New York: Springer; 2007. https://doi.org/10.1007/0-387-37825-1
/ Klimov V. V. Nanoplasmonics*. Moscow: Physmathlit Publ.; 2009. 115 p. (In Russ.)
Inouye H., Tanaka K., Tanahashi I., Hirao K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Physical Review B. 1998;57:11334–11340. https://doi.org/10.1103/Phys-RevB.57.11334
Grua P., Morreeuw P., Bercegol H., Jonusauskas G., Vallée F. Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses. Physical Review B – Condensed Matter and Materials Physics. 2003;68(12): 035424. https://doi.org/10.1103/PhysRevB.68.035424
Agranovich V. M., Mills D. L. Modern problems in condensed matter sciences. Amsterdam: North-Holland Publishing Company; 1982. pp. 3–717. https://doi.org/10.1016/B978-0-444-86165-8.50001-3
Brodskii A. M., M. I. Urbakh. Optics of rough surfaces of metals. Sov. Phys. JETP. 1985;62(2): 391–399. Available at: http://jetp.ras.ru/cgi-bin/dn/e_062_02_0391.pdf
Anisimov S. I., Luk’yanchuk B. S. Selected problems of laser ablation theory. Physics-Uspekhi 2002;45(3): 293–324. https://doi.org/10.1070/PU2002v045n03ABEH000966
Gerasimenko Yu. V., Logacheva V. A., Khoviv A. M. Synthesis and properties of titanium dioxide thin films. Condensed Matter and Interphases. 2010;12(2): 113–118. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=15176043
Hou Y. Q., Zhuang D. M., Zhang G., Zhao M., Wu M. S. Influence of annealing temperature on the properties of titanium oxide thin film. Applied Surface Science. 2003;218(1–4): 98–106. https://doi.org/10.1016/S0169-4332(03)00569-5
Makarov E. S., Kuznetsov M. L. The crystal structure and chemical character of lower oxides of titanium ТiO0–0.48. Journal of Structural Chemistry. 1960;1: 156–162. https://doi.org/10.1007/BF00738933
Chibisov A. N., Bizyuk A. O. Electronic structure of titanium dioxide nanoparticles*. Vestnik Amurskogo gosudarstvennogo universiteta. 2008;(43): 22–23. (In Russ.). Available at: https://www.elibrary.ru/item.
asp?id=19007690
Surface enhanced raman scattering. R. Chang, T. Furtak (eds.). New York and London: Springer; 1982. https://doi.org/10.1007/978-1-4615-9257-0
Gräf S., Müller F. A. Polarisation-dependent generation of fs-laser induced periodic surface structures. Applied Surface Science. 2015;331: 150–155. https://doi.org/10.1016/j.apsusc.2015.01.056
Kang M., Chen J., Wang X. L., Wang H. T. Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B. 2012;29(4). 572–576. https://doi.org/10.1364/JOSAB.29.000572
Bäuerle D. Laser processing and chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg; 1996. 279 p. https://doi.org/10.1007/978-3-662-03253-4
Ford G. W., Weber W. H. Electromagnetic interactions of molecules with metal surfaces. Physics Reports. 1984;113(4): 195–287. https://doi.org/10.1016/0370-1573(84)90098-X
Rosenberg H. M. The solid state : an introduction to the physics of solids for students of physics, materials science, and engineering. Oxford University Press; 1992. 315 p.
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.