Фазовыe равновесия в системе Cu2SnSe3–Sb2Se3–Se
Аннотация
Сложные халькогениды меди-олова и меди-сурьмы представляют большой интерес для разработки новых экологически безопасных и недорогих термоэлектрических материалов. В последние годы интерес к этим соединениям возрос из-за возможности увеличения их термоэлектрической добротности путем разнообразных катионных и анионных замещений. В данной работе продолжено исследование многокомпонентных систем на основе халькогенидов меди и представлены результаты исследования фазовых равновесий в системе Cu2SnSe3–Sb2Se3–Se. Исследование проводили методами дифференциального термического анализа и порошковой рентгенографии.
На основание экспериментальных данных построены проекция поверхности ликвидуса и три политермических сечения фазовой диаграммы. Определены области первичной кристаллизации фаз, характер и температуры нон- и моновариантных равновесий.
Установлено, что поверхность ликвидуса состоит из двух полей первичной кристаллизации фаз на основе Cu2SnSe3 и Sb2Se3. Область первичной кристаллизации элементарного селена вырождена. В системе выявлена широкая область расслаивания двух жидких фаз.
Скачивания
Литература
Alonso-Vante N. Chalcogenide materials for energy conversion. Pathways to oxygen and hydrogen reactions. Springer Cham; 2018. 226 p. https://doi.org/10.1007/978-3-319-89612-0
Applications of Chalcogenides: S, Se, and Te. Ahluwalia G. K. (ed.). Cham. Springer, 2016. 461 p. https://doi.org/10.1007/978-3-319-41190-3
Chalcogenides: Advances in research and applications. Nova P. W. (ed.). 2018. 111 p.
Peccerillo E., Durose K. Copper–antimony and copper–bis muthchal cogenides—Research opportunities and review for solar photovoltaics. MRS Energy & Sustainability. 2018;5(1): 1–59. https://doi.org/10.1557/mre.2018.10
Sanghoon X. L., Tengfei L. J., Zhang L. Y-H. Chalcogenide. From 3D to 2D and beyond. Elsevier; 2019. 398 p.
Suekun K., Takabatake T. Research update: Cu–S based synthetic minerals as efficient thermoelectric materials at medium temperatures. APL Materials. 2016;4: 104503. https://doi.org/10.1063/1.4955398
Chetty R., Bali A., Mallik R. C. Tetrahedrites as thermoelectric materials: an overview. Journal of Materials Chemistry C. 2015;3(48): 12364–12378. https://doi.org/10.1039/c5tc02537k
Kim F. S., Suekuni K., Nishiate H., Ohta M., Tanaka H. I., Takabatake T. Tuning the charge carrier density in the thermoelectric colusite. Journal of Applied Physics. 2016;119(17): 175105. https://doi.org/10.1063/1.4948475
Powell A. V. Recent developments in Earthabundant copper-sulfide thermoelectric materials. Journal of Applied Physics, 2019;126(10): 100901. https://doi.org/10.1063/1.5119345
Mikuła A., Mars K., Nieroda P., Rutkowski P. Copper chalcogenide-copper tetrahedrite composites – a new concept for stable thermoelectric materials dased on the chalcogenide system. Materials. 2021;14(10): 2635. https://doi.org/10.3390/ma14102635
Sobolev A. V., Presniakov I. A., Nasonova D. I., Verchenko V. Yu., Shevelkov, A. V. Thermally-activated electron exchange in Cu12-xFexSb4S13 (x = 1.3, 1.5) tetrahedrites: a Mössbauer study. The Journal of Physical Chemistry C. 2017;121(8): 4548–4557. https://doi.org/10.1021/acs.jpcc.6b12779
Sun F.-H., Dong J., Dey S., … Li J.-F. Enhanced thermoelectric performance of Cu12Sb4S13−d tetrahedrite via nickel doping. Science China Materials. 2018;61(9): 1209–1217. https://doi.org/10.1007/s40843-018-9241-x
Deng S., Jiang X., … Tang X. The reduction of thermal conductivity in Cd and Sn co-doped Cu3SbSe4- based composites with a secondary-phase CdSe. Journal of Materials Science, 2020;56(7): 4727–4740. https://doi.org/10.1007/s10853-020-05586-3
Zhao D., Wu D., Bo L. Enhanced thermoelectric properties of Cu3SbSe4 compounds via gallium doping. Energies. 2017;10(10): 1524. https://doi.org/10.3390/en10101524
Liu G., Li J., Chen K., … Li, L. Direct fabrication of highly-dense Cu2ZnSnSe4 bulk materials by combustion synthesis for enhanced thermoelectric properties. Materials & Design. 2016;93: 238–246. https://doi.org/10.1016/j.matdes.2015.12.172
Liu M., Qin X., Liu C. Substitution site selection and thermoelectric performance-enhancing mechanism of Cu12Sb4S13 doped with Pb/Ge/Sn. Physica Status Solidi B. 2022;259: 2100275–2100278. https://doi.org/10.1002/pssb.202100275
Chen K., Di Paola C., Laricchia S., … Bonini N. Structural and electronic evolution in the Cu3SbS4– Cu3SnS4 solid solution. Journal of Materials Chemistry C. 2020;8(33): 11508–11516. https://doi.org/10.1039/d0tc01804j
Nasonova D. I., Sobolev A. V., Presniakov I. A., Andreeva K. D., Shevelkov A. V. Position and oxidation state of tin in Sn-bearing tetrahedrites Cu12-xSnxSb4S13. Journal of Alloys and Compounds, 2019;778: 774–778. https://doi.org/10.1016/j.jallcom.2018.11.168
Wei T.-R., Wang H., Gibbs Z. M., … Li J.-F. Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. Journal of Materials Chemistri A. 2014;2(33): 13527–13533. https://doi.org/10.1039/c4ta01957a
Tippireddy S., Prem Kumar D. S., Karati A., … Mallik R. C. Effect of Sn substitution on the thermoelectric properties of synthetic tetrahedrite. ACS Applied Materials and Interfaces. 2019;116(24): 21686–21696. https://doi.org/10.1021/acsami.9b02956
Chen K., Di Paola C., Du B., … Reece, M. Enhanced thermoelectric performance of Sn-doped Cu3SbS4. Journal of Materials Chemistry C. 2018;6(31): 8546–8552. https://doi.org/10.1039/c8tc02481b
Pi J.-H., Lee G.-E., Kim I.-H. Effects of Sndoping on the thermoelectric properties of famatinite. Journal of Electronic Materials. 2019;49(5): 2755 – 2761. https://doi.org/10.1007/s11664-019-07710-9
Babanly M. B., Chulkov E. V., Aliev Z. S., Shevel’kov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russian Journal of Inorganic Chemistry. 2017;62(13): 1703–1729. https://doi.org/10.1134/s0036023617130034
Imamaliyeva S. Z., Babanly D. M., Tagiev D. B., Babanly M. B. Physicochemical aspects of development of multicomponent chalcogenide phases having the Tl5Te3 structure: A Review. Russian Journal of Inorganic Chemistry. 2018;13: 1703–1027. https://doi.org/10.1134/s0036023618130041
Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Study of the 2Cu2S+GeSe2 ↔ Cu2Se+GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6-хSex solid solutions. Journal of Alloys and Compounds. 2017;691: 255–262. doi: https://doi.org/10.1016/j.jallcom.2016.08.251
Mashadiyeva L. F., Kevser J. O., Aliev I. I., Yusibov Y. A., Taghiyev D. B., Aliev Z. S., Babanlı M. B. The Ag2Te-SnTe-Bi2Te3 system and thermodynamic properties of the (2SnTe)1–X(AgBiTe2)X solid solutions series. Journal of Alloys and Compounds. 2017;724: 641–648. https://doi.org/10.1016/j.jallcom.2017.06.338
Mashadiyeva L. F., Kevser J. O., Aliev I. I., Yusibov Y. A., Taghiyev D. B., Aliev Z. S., Babanlı M. B. Phase equilibria in the Ag2Te-SnTe-Sb2Te3 system and thermodynamic properties of the (2SnTe)12x(AgSbTe2)x solid solution. Phase Equilibria and Diffusion. 2017;38(5): 603–614. https://doi.org/10.1007/s11669-017-0583-2
Bagheri S. M., Alverdiyev I. J., Aliev Z. S., Yusibov Y. A., Babanly M. B. Phase relationships in the 1.5GeS2+Cu2GeSe3 ↔ 1.5GeSe2+Cu2GeS3 reciprocal system. Journal of Alloys and Compounds. 2015;625: 131–137. https://doi.org/10.1016/j.jallcom.2014.11.118
Ismayilova E. N., Baladzhayeva A. N., Mashadiyeva L. F. Phase equilibria along the Cu3SbSe4- GeSe2 section of The Cu-Ge-Sb-Se. New Materials, Compounds and Applications. 2021;5(1): 52–58. Режим доступа: http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V5N1/Ismayilova_et_al.pdf
Ismayilova E. N. X-ray study of phase equilibria of the Cu3SbSe4-SnSe2. News of Azerbaijan Higher Technical Educational Institutions. 2021;23(5): 21–25. Режим доступа: https://zenodo.org/record/7621101
Ostapyuk T. A., Yermiychuk I. M., Zmiy O. F., Olekseyuk I. D. Phase equilibria in the quasiternary system Cu2Se–SnSe2–Sb2Se3. Chemistry of Metals and Alloys. 2009;2: 164–169. https://doi.org/10.30970/cma2.0100
Ismayilova E. N., Mashadieva L. F. Фазовые равновесия в системе Cu2Se-SnSe-Sb2Se3 по разрезу SnSe-Cu3SbSe3. Конденсированные среды и межфазные границы. 2018;20(2): 218–221. https://doi.org/10.17308/kcmf.2018.20/553
Ismailova E. N., Mashadieva L. F., Bakhtiyarly I. B., Babanly M. B. Phase equilibria in the Cu2Se–SnSe–CuSbSe2 system. Russian Journal of Inorganic Chemistry. 2019;64(6): 801–809. https://doi.org/10.1134/S0036023619060093
Ismailova E. N, Bakhtiyarly I. B, Babanly M. B. Refinement of the phase diagram of the SnSe-Sb2Se3 system. Chemical Problems. 2020;18(2): 250-256. https://doi.org/10.32737/2221-8688-2020-2-250-256
Ismayilova E. N. , Mashadiyeva L. F. , Bakhtiyarly I. B., Babanly M. B. Phase equilibria in the Cu2Se-SnSe-Sb2Se3 system. Azerbaijan Chemical Journal. 2022;1: 73–82. https://doi.org/10.32737/0005-2531-2022-1-73-82
Binary alloy phase diagrams - second edition. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (eds.). Ohio, USA: ASM International, Materials Park; 1990. 3589 p.
Voutsas G. P., Papazoglou A. G., Rentzeperis P. J., Siapkas D. The crystal structure of antimony selenide, Sb2Se3. Zeitschrift für Kristallographie - Crystalline Materials. 1985;171: 261–268. https://doi.org/10.1524/zkri.1985.171.14.261
Parasyuk O. V., Olekseyuk I. D., Marchuk O. V. The Cu2Se–HgSe–SnSe2 system. Journal of Alloys and Compounds. 1999; 287(1-2): 197–205. https://doi.org/10.1016/S0925-8388(99)00047-X
Babanly M. B., Yusibov Yu. A., Abishov V. T. Three-component chalcogenides based on copper and silver*. Baku: BSU Publ.; 1993. 342 p. (In Russ.).
Sharma B.B., Ayyar R., Singh H. Stability of the Tetrahedral Phase in the AI 2BIVCVI 3 Group of Compounds.
Physica Status Solidi A. 1977;A40(2): 691–697. https://doi.org/10.1002/pssa.2210400237
Marcano G., Chalbaud L., Rincón C., Sánchez P. G. Crystal growth and structure of the semiconductor Cu2SnSe3. Materials Letters. 2002;53(3): 151–154. https://doi.org/10.1016/s0167-577x(01)00466-9
Delgado G. E., Mora A. J., Marcano G., Rincon C. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Materials Research Bulletin. 2003;38: 1949–1955. https://doi.org/10.1016/j.materresbull.2003.09.017
Emsley J. The Elements. Oxford University Press; 1998. 300 p.
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.