Активность и стабильность PtCo/С электрокатализаторов окисления спиртов

  • Дмитрий Константинович Мауэр Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация https://orcid.org/0000-0002-1658-2426
  • Сергей Валерьевич Беленов Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация https://orcid.org/0000-0003-2980-7089
  • Алексей Юрьевич Никулин Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация
  • Никита Васильевич Топорков Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация
Ключевые слова: метанольные топливные элементы, этанольные топливные элементы, электрокатализ, реакция окисления этанола, реакция окисления метанола, биметаллические катализаторы

Аннотация

       Данное исследование рассматривает жидкофазный синтез PtCo/С катализаторов с различной массовой долей металлов и соотношением Pt:Co на основе СoOx/С композитных носителей. Цель статьи – изучить активность в реакциях окисления метанола и этанола PtCo/С электрокатализаторов различного состава и сравнить их характеристики с коммерческими PtRu/C и Pt/C аналогами.
       Синтезированы PtCo/С катализаторы с соотношением Pt:Co – 1:1 и 3:1. Определена величина удельной активной поверхности полученных PtCo/С материалов, изучена их активность в реакциях окисления метанола и этанола, устойчивость к отравлению промежуточными продуктами окисления спиртов. Структурные и электрохимические характеристики полученных PtCo/С катализаторов были изучены методами рентгеновской дифракции, циклической вольтамперометрии и хроноамперометрии. Было установлено, что PtCo/С материалы с массовой долей платины
близкой к 20 % демонстрируют наибольшую активности и стабильность, по сравнению с коммерческими PtRu/C и Pt/C аналогами.
       Представленные результаты показывают перспективность использования PtCo/С катализаторов в прямых спиртовых топливных элементах.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Дмитрий Константинович Мауэр, Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация

м. н. с. кафедры электрохимии, Южный федеральный университет (Ростов-на-Дону, Российская Федерация).

Сергей Валерьевич Беленов, Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация

к. х. н., в. н. с. кафедры электрохимии, Южный федеральный университет (Ростов-на-Дону, Российская Федерация).

Алексей Юрьевич Никулин, Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация

м. н. с. кафедры электрохимии, Южный федеральный университет
(Ростов-на-Дону, Российская Федерация).

Никита Васильевич Топорков, Южный федеральный университет, ул., Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация

стажёр-исследователь, НИИ физики, Отдел аналитического приборостроения, Южный федеральный университет (Ростов-на-Дону, Российская Федерация).

Литература

Sundarrajan S., Allakhverdiev S. I., Ramakrishna. S. Progressand perspectives in micro direct methanol fuel cell. Int J of Hydrogen Energy. 2012;37(10): 8765–8786. https://doi.org/10.1016/j.ijhydene.2011.12.017

Yaroslavtsev A. B., Dobrovolsckiy Yu. A., Shaglaeve N. S., Frolova L. A., Gerasimova E. V., Sanginov E. A. Nanostructured materials developed for the low temperature fuel elements, Russian Chemical Reviews. 2012;81(3) 191–201. https://doi.org/10.1070/RC2012v081n03ABEH004290

Karim N. A., Kamarudin S. K. Introduction to direct alcohol fuel cells (DAFCs). Direct Liquid Fuel Cells. 2021: 49–70. https://doi.org/10.1016/B978-0-12-818624-4.00002-9

Wang X. X., Swihart M. T., Wu G. Achievements, challenges andperspectives on cathode catalysts in proton exchangemembrane fuel cells for transportation. Nature Catalysis. 2019;2: 578–589. https://doi.org/10.1038/s41929-019-0304-9

Menshikov V. S., Novomlinsky I. N., Belenov S. V., Alekseenko A. A., Safronenko O. I., Guterman V. E. Methanol, ethanol, and formic acid oxidation on new platinum-containing catalysts. Catalysts. 2021;11: 1–18. https://doi.org/10.3390/catal11020158

Petrii O. A. The progress in understanding the mechanisms of methanol and for micacid electrooxidation on platinum group metals. Russian Journal of Electrochemistry. 2019;55: 1-33. https://doi.org/10.1134/S1023193519010129

Vigier F., Coutanceau C., Hahn F., Belgsir E. M., Lamy, C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. Journal of Electroanalytical Chemistry. 2004;563(1): 81–89. https://doi.org/10.1016/j.jelechem.2003.08.019

Chen A., Holt-Hindle P. Platinum-based nanostructuredmaterials properties, and applications. Chemical Reviews. 2010;110(6): 3767–3804. https://doi.org/10.1021/cr9003902

Shi G. Y., Yano H., Tryk D. A., Watanabe M., Uchida H. A novel Pt–Co alloy hydrogen anode catalyst with superlative activity, CO-tolerance and robustness. Nanoscale. 2016;8: 13893–13897. https://doi.org/10.1039/c6nr00778c

Antolini E., Salgado J. R. C., Gonzalez E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review. Applied Catalysis B: Environmental. 2006;63(1–2): 137–149. https://doi.org/10.1016/j.apcatb.2005.09.014

Baronia R., Goel J., Tiwari S., Singh P. Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC. International Journal of Hydrogen Energy. 2017;42(15): 10238–10247. https://doi.org/10.1016/j.ijhydene.2017.03.011

Xu Y., Yuan Y., Ma A., Wu X., Liu Y., Zhang B. Composition-tunable Pt-Co alloy nanoparticle networks: facile room-temperature synthesis and supportless electrocatalytic applications. ChemPhysChem. 2012;13: 2601–2609. https://doi.org/10.1002/cphc.201100989

Sorsa O., Romar H., Lassi U., Kallio T. Co-electrodeposited mesoporous PtM (M=Co, Ni, Cu) as an active catalyst for oxygen reduction reaction in a polymer electrolyte membrane fuel cell. Electrochimica Acta. 2017;230: 49–57. https://doi.org/10.1016/j.electacta.2017.01.158

Mohl M., Dobo D., Kukovecz A., … Ajayan P. M. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. The Journal of Physical Chemistry C. 2011;115: 9403–9409. https://doi.org/10.1021/jp112128g

Wang X, Zhang L., Wang F., Yu J., Zhu H. Nickel-introduced structurally ordered PtCuNi/C as high performance electrocatalyst for oxygen reduction reaction. Progress in Natural Science: Materials Inter-national. 2020;30(6): 05–911. https://doi.org/10.1016/j.pnsc.2020.10.017

Asset T., Chattot R., Fontana M., … Maillard F. A Review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles. ChemPhysChem. 2018;19: 1552–1567. https://doi.org/10.1002/cphc.201800153

Jalan V. M., Taylor E. J. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. Journal of The Electrochemical Society. 1983; 130(11): 2299–2302. https://doi.org/10.1149/1.2119574

Toda T., Igarashi H., Uchida H., Watanabe M. Enhancement of the electroreduction of oxygen on Pt Alloys with Fe, Ni, and Co. Journal of The Electrochemical Society. 1999;146: 3750–3756. https://doi.org/10.1149/1.1392544

Munoz M., Ponce S., Zhang G. R., Etzold B. J. M. Size-controlled PtNi nanoparticles as highly efficient catalyst for hydrodechlorination reactions. Applied Catalysis B: Environmental. 2016;192: 1–7. https://doi.org/10.1016/J.APCATB.2016.03.038

Konno N., Mizuno S., Nakaji H., Ishikawa Y. Development of compact and high- performance fuel cell stack. SAE International Journal of Alternative Powertrains. 2015;4(1): 123–129. https://doi.org/10.4271/2015-01-1175

Ding J., Ji S., Wang H., Pollet B. G., Wang R. Tailoring nanopores within nanoparticles of PtCo networks as catalysts for methanol oxidation reaction. Electrochimica Acta. 2017;255: 55–62. https://doi.org/10.1016/j.electacta.2017.09.159

Li Z., Jiang X., Wang X., … Tang Y. Concave PtCo nanocrosses for methanol oxidation reaction. Applied Catalysis B: Environmental. 2020;270: 119135–119160. https://doi.org/10.1016/j.apcatb.2020.119135

Xu C., Hou J., Pang X., Li X., Zhu M., Tang B. Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. International Journal of Hydrogen Energy. 37(14), 10489–10498. https://doi.org/10.1016/j.ijhydene.2012.04.041

Flórez-Montaño J., García G., Guillén-Villafuerte O., Rodríguez J. L., Planes G. A., Pastor E. Mechanism of ethanol electrooxidation on mesoporous Pt electrode in acidic medium studied by a novel electrochemical mass spectrometry set-up. Electrochimica Acta. 2016;209: 121–131. https://doi.org/10.1016/j.electacta.2016.05.070

Bonesi A., Garaventa G., Triaca W., Castro Luna A. Synthesis and characterization of new electrocatalysts for ethanol oxidation. International Journal of Hydrogen Energy. 2008;33(13): 3499–3501. https://doi.org/10.1016/j.ijhydene.2007.12.056

Parreira L. S., Antoniassi R. M., Freitas I. C., de Oliveira D. C., Spinacé E. V., Camargo P. H. C., dos Santos M. C. MWCNT-COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: Low Pt content, selectivity and chemical stability. Renewable Energy. 2019;143: 1397–1405. https://doi.org/10.1016/j.renene.2019.05.067

Li J., Jilani S. Z., Lin H., … Sun S. Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angewandte Chemie. 2019;131(33): 11651–11657. https://doi.org/10.1002/ange.201906137

Xu C., Su Y., Tan L., Liu Z., Zhang J., Chen S., Jiang S. P. Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol electrooxidation of direct alcohol fuel cells. Electrochimica Acta. 2009;54(26): 6322–6326. https://doi.org/10.1016/j.electacta.2009.05.088

Kepenienė V., Tamašauskaitė-Tamašiūnaitė L., Jablonskienė J., Vaičiūnienė J., Kondrotas R., Juškėnas R., Norkus E. Investigation of graphene supported platinum-cobalt nanocomposites as electrocatalysts for ethanol pxidation. Journal of The Electrochemical Society. 2014;161(14): F1354–F1359. https://doi.org/10.1149/05901.0217ecst

Mondal A., De A., Datta J. Selective methodology for developing PtCo NPs and performance screening for energy efficient electro-catalysis in direct ethanol fuel cell. International Journal of Hydrogen Energy. 2019;44(21): 10996–11011. https://doi.org/10.1016/j.ijhydene.2019.02.146

Zhai X., Wang P., Wang K., Li J., Pang X., Wang X., Li Z. Facile synthesis of PtCo nanowires with enhanced electrocatalytic performance for ethanol oxidation reaction. Ionics. 2020;26(6): 3091–3097. https://doi.org/10.1007/s11581-019-03419-1

Mauer D., Belenov S., Guterman V., … Safronenko O. Gram-scale synthesis of CoO/C as base for PtCo/C high-performance catalysts for the oxygen reduction reaction. Catalysts. 2021;11(12): 1539–1558. https://doi.org/10.3390/catal11121539

Langford J. I., Wilson A. J. C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of Applied Crystallography. 1978;11(2): 102–103. https://doi.org/10.1107/S0021889878012844

Guo J. W., Zhao T. S., Prabhuram J., Chen R., Wong C.W. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochimica Acta. 2005;51(4): 754–763. https://doi.org/10.1016/j.electacta.2005.05.056

Jenkins R., Snyder R. L. Introduction to X-Ray powder diffractometry. John Wiley & Sons; 1996. 432 p.

Favilla P. C., Acosta J. J., Schvezov C. E., Sercovich D. J., Collet-Lacos J. R. Size control of carbon-supported platinum nanoparticles made using polyol method for low temperature fuel cells. Chemical Engineering Science. 2013;101: 27–34. https://doi.org/10.1016/j.ces.2013.05.067

Hu S., Wang Z., Chen H., Wang S., Li X., Zhang X., Shen P. K. Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction. Journal of Electroanalytical Chemistry. 2020;870, 114194–114201. https://doi.org/10.1016/j.jelechem.2020.114194

Huang T., Zhang D., Xue L., Cai W.-B., Yu A. A facile method to synthesize well-dispersed PtRuMoOx and PtRuWOx nanoparticles and their electrocatalytic activities for methanol oxidation. Journal of Power Sources. 2009;192(2): 285–290. https://doi.org/10.1016/j.jpowsour.2009.03.037

Kuo C.-W., Lu I-T., Chang L.-C., … Lee J.-F. Surface modification of commercial PtRu nanoparticles for methanol electro-oxidation. Journal of Power Sources. 2013;240: 122–130. https://doi.org/10.1016/j.jpowsour.2013.04.001

Rudi S., Cui C., Gan L., Strasser P. Comparative study of the electrocatalytically active surface Aareas (ECSAs) of Pt alloy nanoparticles evaluated by Hupd and CO-stripping voltammetry. Electrocatalysis. 2014;5: 408–418. https://doi.org/10.1007/s12678-014-0205-2

Van der Vliet D. F., Wang C., Li D., … Stamenkovic V. R. Unique electrochemical adsorption properties of Pt-skin surfaces. Angewandte Chemie International Edition. 2012;51(3): 3139–3142. https://doi.org/10.1002/anie.201107668

de la Fuente J. L. G., Rojas S., Martínez-Huerta M. V., Terreros P., Peña M. A., Fierro J. L. G. Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation. Carbon. 2006;44: 1919–1929. https://doi.org/10.1016/j.carbon.2006.02.009

Travitsky N., Ripenbein T., Golodnitsky D., Rosenberg Y., Burshtein L., Peled E. Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells. Journal of Power Sources. 2006;161: 782–789. https://doi.org/10.1016/j.jpowsour.2006.05.035

Li X., Liu Y., Zhu J., Tsiakaras P., Shen P. K. Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M = Co, Ni) nanoflowers. Journal of Colloid and Interface Science. 2022;607: 1411–1423. https://doi.org/10.1016/j.jcis.2021.09.060

Yang H. Platinum-based electrocatalysts with core-shell nanostructures. Angewandte Chemie International Edition. 2011;50(12): 2674. https://doi.org/10.1002/anie.201005868

Paulus U. A., Wokaun A., Scherer G. G., Schmidt T. J., Stamenković V., Marković N. M., Ross P. N. Oxygen reduction on high surface area Ptbased alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta. 2002;47(22-23): 3787. https://doi.org/10.1016/s0013-4686(02)00349-3

Xing Z., Li J., Wang S., Su C., Jin H. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Research. 2022;15: 3866–3871. https://doi.org/10.1007/s12274-021-3993-8

Petrii O. A. Pt–Ru electrocatalysts for fuel cells: a representative review. Journal of Solid-State Electrochemistry. 2008;12(5): 609–642. https://doi.org/10.1007/s10008-007-0500-4

Tolmachev Y. V., Petrii O. A. Pt–Ru electrocatalysts for fuel cells: developments in the last decade. Journal of Solid-State Electrochemistry. 2017;21: 613–639. https://doi.org/10.1007/s10008-016-3382-5

Castagna R. M., Sieben J. M., Alvarez A. E., Duarte M. M. E. Electrooxidation of ethanol and glycerol on carbon supported PtCu nanoparticles. International Journal of Hydrogen Energy. 2019;44: 5970–5982. https://doi.org/10.1016/j.ijhydene.2019.01.090

Fang B., Feng L. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Physico-Chimica Sinica. 2020;36(7): 1905023. https://doi.org/10.3866/PKU.WHXB201905023

Опубликован
2023-03-09
Как цитировать
Мауэр, Д. К., Беленов, С. В., Никулин, А. Ю., & Топорков, Н. В. (2023). Активность и стабильность PtCo/С электрокатализаторов окисления спиртов. Конденсированные среды и межфазные границы, 25(1), 72-84. https://doi.org/10.17308/kcmf.2023.25/10976
Раздел
Оригинальные статьи