Исследования полуполярного нитрида галлия, выращенного на m-сапфире хлоридной газофазной эпитаксией
Аннотация
В нашем исследовании мы проанализировали результат влияния неполярной m-плоскости сапфировой подложки на структурные, морфологические, оптические свойства и Рамановское рассеяние выращенной эпитаксиальной пленки GaN.
Мы обнаружили, что выбранные технологические условия хлорид гидридной эпитаксии позволяют получить образцы структурно качественного полуполярного вюрцитного нитрида галлия с (11¯22) ориентацией на m-сапфире. С использованием комплекса структурно-спектроскопических методов анализа изучены структурные, морфологические и оптических свойства пленок, определен уровень остаточных биаксиальных напряжений. Набор результатов свидетельствует о высоком структурном и оптическом качестве эпитаксиальной пленки нитрида галлия.
Оптимизация использованной технологической методики в будущем может стать многообещающим подходом
роста качественных GaN структур на подложках m-сапфира.
Скачивания
Литература
Hibberd M. T., Frey V., Spencer B. F., Mitchell P. W., Dawson P., Kappers M. J., Oliver R. A., Humphreys C. J., Graham D. M. Dielectric response of wurtzite gallium nitride in the terahertz frequency range. Solid State Communications. 2016;247: 68–71.https://doi.org/10.1016/j.ssc.2016.08.017
Ambacher O., Majewski J., Miskys C., Link A., Hermann M., Eickhoff M., Stutzmann M., Bernardini F., Fiorentini V., Tilak V., Schaff B., Eastman L. F. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. Journal of Physics: Condensed Matter. 2002;14(13): 3399–3434. https://doi.org/10.1088/0953-8984/14/13/302
Grahn H. T. Polarization properties of nonpolar GaN films and (In,Ga)N/GaN multiple quantum wells. Physica Status Solidi (b). 2004;241(12): 2795–2801. https://doi.org/10.1002/pssb.200405040
Katzir S. The discovery of the piezoelectric effect. Archive for History of Exact Sciences. 2003;57(1): 61–91. https://doi.org/10.1007/s00407-002-0059-5
Xu B., Jiu L., Gong Y., Zhang Y., Wang L. C., Bai J., Wang T. Stimulated emission from semi-polar (11-22) GaN overgrown on sapphire. AIP Advances. 2017;7(4): 045009. https://doi.org/10.1063/1.4981137
Landmann M., Rauls E., Schmidt W. G., Neumann M. D., Speiser E., Esser N. GaN m -plane: Atomic structure, surface bands, and optical response. Physical Review B. 2015;91(3): 035302. https://doi.org/10.1103/PhysRevB.91.035302
Fu H., Zhang X., Fu K., Liu H., Alugubelli S. R., Huang X., Chen H., Baranowski I., Yang T.-H., Xu K., Ponce F. A., Zhang B., Zhao Y. Nonpolar vertical GaNon-GaN p–n diodes grown on free-standing (10-10) m-plane GaN substrates. Applied Physics Express. 2018;11(11): 111003. https://doi.org/10.7567/APEX.11.111003
Wang M., Xu K., Xu S. Photoluminescence and Raman Scattering signatures of anisotropic optical properties in freestanding m‑, a- and c‑plane GaN substrates. The Journal of Physical Chemistry C. 2020;124(33): 18203–18208. https://doi.org/10.1021/acs.jpcc.0c04959
Maliakkal C. B., Rahman A. A., Hatui N., Chalke B. A., Bapat R. D., Bhattacharya A. Comparison of GaN nanowires grown on c-, r- and m-plane sapphire substrates. Journal of Crystal Growth. 2016;439:47–53. https://doi.org/10.1016/j.jcrysgro.2015.12.044
de Mierry P., Kriouche N., Nemoz M., Nataf G. Improved semipolar (112¯2) GaN quality using asymmetric lateral epitaxy. Applied Physics Letters. 2009; 94(19): 191903. https://doi.org/10.1063/1.3134489
Seredin P. V., Lenshin A. S., Mizerov A. M., Leiste H., Rinke M. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate por-Si(111). Applied Surface Science. 2019;476: 1049–1060. https://doi.org/10.1016/j.apsusc.2019.01.239
Boichot R., Chen D., Mercier F., Baillet F., Giusti G., Coughlan T., Chubarov M., Pons M. Epitaxial growth of AlN on (0001) sapphire: assessment of HVPE process by a design of experiments approach. Coatings. 2017;7(9): 136. https://doi.org/10.3390/coatings7090136
Hu J., Wei H., Yang S., Li C., Li H., Liu X., Wang L., Wang Z. Hydride vapor phase epitaxy for gallium nitride substrate. Journal of Semiconductors. 2019;40(10): 101801. https://doi.org/10.1088/1674-4926/40/10/101801
Seredin P. V., Goloshchapov D. L., Arsentyev I. N., Sharofidinov S., Kasatkin I. A., Prutskij T. HVPE fabrication of GaN sub-micro pillars on preliminarily treated Si(001) substrate. Optical Materials. 2021;117: 111130. https://doi.org/10.1016/j.optmat.2021.111130
Bessolov V. N., Zhilyaev Yu. V., Konenkova E. V., Poletaev N. K., Sharofidinov Sh., Shcheglov M. P. Epitaxy of gallium nitride in semi-polar direction on silicon. Technical Physics Letters. 2012;38(1): 9–11. https://doi.org/10.1134/S1063785012010051
Nikolaev V. I., Pechnikov A. I., Stepanov S. I., Sharofidinov Sh. Sh., Golovatenko A. A., Nikitina I. P., Smirnov A. N., Bugrov V. E., Romanov A. E., Brunkov P. N., Kirilenko D. A. Chloride epitaxy of b-Ga2O3 layers grown on c-sapphire substrates. Semiconductors. 2016;50(7): 980–983. https://doi.org/10.1134/S1063782616070186
Wu Z., Shen X., Liu C., Li K., Shen W., Kang J., Fang Z. In situ asymmetric island sidewall growth of high-quality semipolar (112¯2) GaN on m-plane sapphire. CrystEngComm. 2016;18(29): 5440–5447. https://doi.org/10.1039/C6CE00878J
Ni X., Özgür Ü., Baski A. A., Morkoç H., Zhou L., Smith D. J., Tran C. A. Epitaxial lateral overgrowth of (112¯2) semipolar GaN on (11¯00) m-plane sapphire by metalorganic chemical vapor deposition. Applied Physics Letters. 007;90(18): 182109. https://doi.org/10.1063/1.2735558
Jinno R., Chang C. S., Onuma T., Cho Y., … Jena D. Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV a-(AlGa)2O3 on m-plane sapphire. Science Advances. 2021;7(2): eabd5891. https://doi.org/10.1126/sciadv.abd5891
Seredin P. V., Domashevskaya P., Arsentyev I. N., Vinokurov D. A., Stankevich A. L., Prutskij T. Superstructured ordering in AlxGa1−xAs and GaxIn1–xP alloys. Semiconductors. 2013;47(1): 1–6. https://doi.org/10.1134/S106378261301020X
Domashevskaya E. P., Seredin P. V., Lukin A. N., Bityutskaya L. A., Grechkina M. V., Arsentyev I. N., Vinokurov D. A., Tarasov I. S. XRD, AFM and IR investigations of ordered AlGaAs2 phase in epitaxial AlxGa1–xAs/GaAs (100) heterostructures. Surface and Interface Analysis. 2006;38(4): 828–832. https://doi.org/10.1002/sia.2306
Seredin P. V., Lenshin A. S., Zolotukhin D. S., Arsentyev I. N., Nikolaev D. N., Zhabotinskiy A. V. Experimental study of structural and optical properties of integrated MOCVD GaAs/Si(001) heterostructures. Physica B: Condensed Matter. 2018;530: 30–37. https://doi.org/10.1016/j.physb.2017.11.028
Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Tarasov I. S. Structural features and surface morphology of AlxGay-In1-x-yAszP1-z/GaAs(1 0 0) heterostructures. Applied Surface Science. 2013;267: 181–184. https://doi.org/10.1016/j.apsusc.2012.09.053
Seredin P. V., Ternovaya V. E., Glotov A. V., Len’shin A. S., Arsent’ev I. N., Vinokurov D. A., Tarasov I. S., Leiste H., Prutskij T. X-ray diffraction studies of heterostructures based on solid solutions AlxGa1–xAsyP1–y:Si. Physics of the Solid State. 2013;55(10): 2161–2164. https://doi.org/10.1134/S1063783413100296
Li Z., Jiu L., Gong Y., Wang L., Zhang Y., Bai J., Wang T. Semi-polar (11-22) AlGaN on overgrown GaN on micro-rod templates: Simultaneous management of crystal quality improvement and cracking issue. Applied Physics Letters. 2017;110(8): 082103. https://doi.org/10.1063/1.4977094
Morkoç H. Handbook of nitride semiconductors and devices: materials properties, physics and growth. Volume 1. Wiley; 2008. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527628438
Collaboration: Authors and editors of the volumes III/17A-22A-41A1a. List of frequently used symbols and abbreviations, conversion factors In: Group IV Elements, IV-IV and III-V Compounds. Part a – Lattice Properties. O. Madelung, U. Rössler, M. Schulz (eds.). Berlin/Heidelberg: Springer-Verlag; 2001;a: 1–7. http://materials.springer.com/lb/docs/sm_lbs_978-3-540-31355-7_2
Harutyunyan V. S., Aivazyan A. P., Weber E. R., Kim Y., Park Y., Subramanya S. G. High-resolution x-ray diffraction strain-stress analysis of GaN/sapphire heterostructures. Journal of Physics D: Applied Physics. 2001;34(10A): A35–A39. https://doi.org/10.1088/0022-3727/34/10A/308
Zeng Y., Ning J., Zhang J., Jia Y., Yan C., Wang B., Wang D. Raman analysis of E2 (High) and A1 (LO) phonon to the stress-free GaN grown on sputtered AlN/graphene buffer layer. Applied Sciences. 2020;10(24): 8814. https://doi.org/10.3390/app10248814
Li P. G., Lei M., Tang W. H. Raman and photoluminescence properties of a-Al2O3 microcones with hierarchical and repetitive superstructure. Materials Letters. 2010;64(2): 161–163. https://doi.org/10.1016/j.matlet.2009.10.032
Lughi V., Clarke D. R. Defect and stress characterization of AlN films by Raman spectroscopy. Applied Physics Letters. 2006;89(24): 241911. https://doi.org/10.1063/1.2404938
Davydov V. Yu., Kitaev Yu. E., Goncharuk I. N., Smirnov A. N., Graul J., Semchinova O., Uffmann D., Smirnov M. B., Mirgorodsky A. P., Evarestov R. A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B. 1998;58(19): 12899–12907. https://doi.org/10.1103/PhysRevB.58.12899
Tripathy S., Chua S. J., Chen P., Miao Z. L. Micro-Raman investigation of strain in GaN and AlxGa1–xN/GaN heterostructures grown on Si(111). Journal of Applied Physics. 2002;92(7): 3503–3510. https://doi.org/10.1063/1.1502921
Seredin P. V., Glotov A. V., Ternovaya V. E., Domashevskaya E. P., Arsentyev I. N., Vavilova L. S., Tarasov I. S. Spinodal decomposition of GaxIn1−xAsyP1−y quaternary alloys. Semiconductors. 2011;45(11): 1433–1440. https://doi.org/10.1134/S1063782611110236
Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Tarasov I. S., Zhurbina I. A. The substructure and luminescence of lowtemperature AlGaAs/GaAs(100) heterostructures. Semiconductors. 2010;44(2): 184–188. https://doi.org/10.1134/S1063782610020089
Seredin P. V., Lenshin A. S., Zolotukhin D. S., Arsentyev I. N., Zhabotinskiy A. V., Nikolaev D. N. Impact of the substrate misorientation and its preliminary etching on the structural and optical properties of integrated GaAs/Si MOCVD heterostructures. Physica E: Low-dimensional Systems and Nanostructures. 2018;97: 218–225. https://doi.org/10.1016/j.physe.2017.11.018
Choi S., Heller E., Dorsey D., Vetury R., Graham S. Analysis of the residual stress distribution in AlGaN/GaN high electron mobility transistors. Journal of Applied Physics. 2013;113(9): 093510. https://doi.org/10.1063/1.4794009
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.