Study of semi-polar gallium nitride grown on m-sapphire by chloride vapor-phase epitaxy

  • Pavel V. Seredin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-6724-0063
  • Nikolay A. Kurilo Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-7652-6912
  • Obaid Radam Ali Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Nikita S. Buylov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-1793-4400
  • Dmitry L. Goloshchapov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-1400-2870
  • Sergey Alexandrovich Ivkov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-1658-5579
  • Alexandr S. Lenshin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-1939-253X
  • Ivan N. Arsentyev Ioffe Institute, 26 Politekhnicheskaya str., Sankt-Petersburg 194021, Russian Federation
  • Alexey V. Nashchekin Ioffe Institute, 26 Politekhnicheskaya str., Sankt-Petersburg 194021, Russian Federation https://orcid.org/0000-0002-2542-7364
  • Shukrilo Sh. Sharofidinov Ioffe Institute, 26 Politekhnicheskaya str., Sankt-Petersburg 194021, Russian Federation
  • Andrey M. Mizerov Federal State Budgetary Institution of the Highest Education and Science «Sankt-Petersburg National Research Academic University of Russian Academy of Sciences», 8 Khlopina, str., Bd. 3, A, Sankt-Petersburg 194021, Russian Federation https://orcid.org/0000-0002-9125-6452
  • Maksim S. Sobolev Federal State Budgetary Institution of the Highest Education and Science «Sankt-Petersburg National Research Academic University of Russian Academy of Sciences», 8 Khlopina, str., Bd. 3, A, Sankt-Petersburg 194021, Russian Federation https://orcid.org/0000-0001-8629-2064
  • Evgeniy V. Pirogov Federal State Budgetary Institution of the Highest Education and Science «Sankt-Petersburg National Research Academic University of Russian Academy of Sciences», 8 Khlopina, str., Bd. 3, A, Sankt-Petersburg 194021, Russian Federation https://orcid.org/0000-0001-7186-3768
  • Igor V. Semeykin Research Institute of Electronic Technology, 5 Staryh Bolshevikov str., Voronezh 394033, Russian Federation https://orcid.org/0000-0001-7186-3768
Keywords: GaN, AlN, m-Al2O3, chemical vapor-phase epitaxy

Abstract

     In this study, we analyzed the result of the influence of the non-polar plane of a sapphire substrate on the structural, morphological, and optical properties and Raman scattering of the grown epitaxial GaN film.
     It was found that selected technological conditions for the performed chloride-hydride epitaxy let us obtain the samples of structurally qualitative semi-polar wurtzite gallium nitride with (11¯22) orientation on m-sapphire. Using a set of structural and spectral methods of analysis the structural, morphological, and optical properties of the films were studied and the value of residual bi-axial stresses was determined. A complex of the obtained results means a high structural and optical quality of the epitaxial gallium nitride film.
     Optimization of the applied technological technique in the future can be a promising approach for the growth of the qualitative GaN structures on m-sapphire substrates.

Downloads

Download data is not yet available.

Author Biographies

Pavel V. Seredin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Full
Professor, Chair of department, Department of Solid
State Physics and Nanostructures, Voronezh State
University (Voronezh, Russian Federation).

Nikolay A. Kurilo, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student, Department
of Solid State Physics and Nanostructures, Voronezh
State University (Voronezh, Russian Federation).

Obaid Radam Ali, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student,
Department of Solid State Physics and Nanostructures,
Voronezh State University (Voronezh, Russian
Federation).

Nikita S. Buylov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Educator,
Department of Solid State Physics and Nanostructures,
Voronezh State University (Voronezh, Russian
Federation).

Dmitry L. Goloshchapov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.),
Assistant Professor, Department of Solid State Physics
and Nanostructures, Voronezh State University
(Voronezh, Russian Federation).

Sergey Alexandrovich Ivkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-
Math.), Educator, Department of Solid State Physics
and Nanostructures, Voronezh State University
(Voronezh, Russian Federation).

Alexandr S. Lenshin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Leading
Researcher, Department of Solid State Physics and
Nanostructures, Voronezh State University (Voronezh,
Russian Federation).

Ivan N. Arsentyev, Ioffe Institute, 26 Politekhnicheskaya str., Sankt-Petersburg 194021, Russian Federation

Dr. Sci. (Eng.), Leading Researcher,
Ioffe Institut, (Saint Petersburg, Russian Federation).

Alexey V. Nashchekin, Ioffe Institute, 26 Politekhnicheskaya str., Sankt-Petersburg 194021, Russian Federation

Cand. Sci. (Phys.-Math.),
Senior Researcher, Ioffe Institute (Saint Petersburg,
Russian Federation).

Shukrilo Sh. Sharofidinov, Ioffe Institute, 26 Politekhnicheskaya str., Sankt-Petersburg 194021, Russian Federation

Cand. Sci. (Phys.-Math.),
Researcher, Ioffe Institute (Saint Petersburg, Russian
Federation).

Andrey M. Mizerov, Federal State Budgetary Institution of the Highest Education and Science «Sankt-Petersburg National Research Academic University of Russian Academy of Sciences», 8 Khlopina, str., Bd. 3, A, Sankt-Petersburg 194021, Russian Federation

Cand. Sci. (Phys.-Math.),
Leading Researcher, Saint Petersburg National
Research Academic University of the Russian Academy
of Sciences (Saint Petersburg, Russian Federation).

Maksim S. Sobolev, Federal State Budgetary Institution of the Highest Education and Science «Sankt-Petersburg National Research Academic University of Russian Academy of Sciences», 8 Khlopina, str., Bd. 3, A, Sankt-Petersburg 194021, Russian Federation

Cand. Sci. (Phys.-Math.), Acting
Head of the Laboratory of Nanoelectronics, Sankt-
Petersburg National Research Academic University of
Russian Academy of Sciences (Saint Petersburg,,
Russian Federation).

Evgeniy V. Pirogov, Federal State Budgetary Institution of the Highest Education and Science «Sankt-Petersburg National Research Academic University of Russian Academy of Sciences», 8 Khlopina, str., Bd. 3, A, Sankt-Petersburg 194021, Russian Federation

Junior Researcher, Saint
Petersburg National Research Academic University of
Russian Academy of Sciences (Saint Petersburg,
Russian Federation).

Igor V. Semeykin, Research Institute of Electronic Technology, 5 Staryh Bolshevikov str., Voronezh 394033, Russian Federation

Cand. Sci. (Eng.),
Technical Director, Research Institute of Electronic
Technology (Voronezh, Russian Federation).

References

Hibberd M. T., Frey V., Spencer B. F., Mitchell P. W., Dawson P., Kappers M. J., Oliver R. A., Humphreys C. J., Graham D. M. Dielectric response of wurtzite gallium nitride in the terahertz frequency range. Solid State Communications. 2016;247: 68–71.https://doi.org/10.1016/j.ssc.2016.08.017

Ambacher O., Majewski J., Miskys C., Link A., Hermann M., Eickhoff M., Stutzmann M., Bernardini F., Fiorentini V., Tilak V., Schaff B., Eastman L. F. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. Journal of Physics: Condensed Matter. 2002;14(13): 3399–3434. https://doi.org/10.1088/0953-8984/14/13/302

Grahn H. T. Polarization properties of nonpolar GaN films and (In,Ga)N/GaN multiple quantum wells. Physica Status Solidi (b). 2004;241(12): 2795–2801. https://doi.org/10.1002/pssb.200405040

Katzir S. The discovery of the piezoelectric effect. Archive for History of Exact Sciences. 2003;57(1): 61–91. https://doi.org/10.1007/s00407-002-0059-5

Xu B., Jiu L., Gong Y., Zhang Y., Wang L. C., Bai J., Wang T. Stimulated emission from semi-polar (11-22) GaN overgrown on sapphire. AIP Advances. 2017;7(4): 045009. https://doi.org/10.1063/1.4981137

Landmann M., Rauls E., Schmidt W. G., Neumann M. D., Speiser E., Esser N. GaN m -plane: Atomic structure, surface bands, and optical response. Physical Review B. 2015;91(3): 035302. https://doi.org/10.1103/PhysRevB.91.035302

Fu H., Zhang X., Fu K., Liu H., Alugubelli S. R., Huang X., Chen H., Baranowski I., Yang T.-H., Xu K., Ponce F. A., Zhang B., Zhao Y. Nonpolar vertical GaNon-GaN p–n diodes grown on free-standing (10-10) m-plane GaN substrates. Applied Physics Express. 2018;11(11): 111003. https://doi.org/10.7567/APEX.11.111003

Wang M., Xu K., Xu S. Photoluminescence and Raman Scattering signatures of anisotropic optical properties in freestanding m‑, a- and c‑plane GaN substrates. The Journal of Physical Chemistry C. 2020;124(33): 18203–18208. https://doi.org/10.1021/acs.jpcc.0c04959

Maliakkal C. B., Rahman A. A., Hatui N., Chalke B. A., Bapat R. D., Bhattacharya A. Comparison of GaN nanowires grown on c-, r- and m-plane sapphire substrates. Journal of Crystal Growth. 2016;439:47–53. https://doi.org/10.1016/j.jcrysgro.2015.12.044

de Mierry P., Kriouche N., Nemoz M., Nataf G. Improved semipolar (112¯2) GaN quality using asymmetric lateral epitaxy. Applied Physics Letters. 2009; 94(19): 191903. https://doi.org/10.1063/1.3134489

Seredin P. V., Lenshin A. S., Mizerov A. M., Leiste H., Rinke M. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate por-Si(111). Applied Surface Science. 2019;476: 1049–1060. https://doi.org/10.1016/j.apsusc.2019.01.239

Boichot R., Chen D., Mercier F., Baillet F., Giusti G., Coughlan T., Chubarov M., Pons M. Epitaxial growth of AlN on (0001) sapphire: assessment of HVPE process by a design of experiments approach. Coatings. 2017;7(9): 136. https://doi.org/10.3390/coatings7090136

Hu J., Wei H., Yang S., Li C., Li H., Liu X., Wang L., Wang Z. Hydride vapor phase epitaxy for gallium nitride substrate. Journal of Semiconductors. 2019;40(10): 101801. https://doi.org/10.1088/1674-4926/40/10/101801

Seredin P. V., Goloshchapov D. L., Arsentyev I. N., Sharofidinov S., Kasatkin I. A., Prutskij T. HVPE fabrication of GaN sub-micro pillars on preliminarily treated Si(001) substrate. Optical Materials. 2021;117: 111130. https://doi.org/10.1016/j.optmat.2021.111130

Bessolov V. N., Zhilyaev Yu. V., Konenkova E. V., Poletaev N. K., Sharofidinov Sh., Shcheglov M. P. Epitaxy of gallium nitride in semi-polar direction on silicon. Technical Physics Letters. 2012;38(1): 9–11. https://doi.org/10.1134/S1063785012010051

Nikolaev V. I., Pechnikov A. I., Stepanov S. I., Sharofidinov Sh. Sh., Golovatenko A. A., Nikitina I. P., Smirnov A. N., Bugrov V. E., Romanov A. E., Brunkov P. N., Kirilenko D. A. Chloride epitaxy of b-Ga2O3 layers grown on c-sapphire substrates. Semiconductors. 2016;50(7): 980–983. https://doi.org/10.1134/S1063782616070186

Wu Z., Shen X., Liu C., Li K., Shen W., Kang J., Fang Z. In situ asymmetric island sidewall growth of high-quality semipolar (112¯2) GaN on m-plane sapphire. CrystEngComm. 2016;18(29): 5440–5447. https://doi.org/10.1039/C6CE00878J

Ni X., Özgür Ü., Baski A. A., Morkoç H., Zhou L., Smith D. J., Tran C. A. Epitaxial lateral overgrowth of (112¯2) semipolar GaN on (11¯00) m-plane sapphire by metalorganic chemical vapor deposition. Applied Physics Letters. 007;90(18): 182109. https://doi.org/10.1063/1.2735558

Jinno R., Chang C. S., Onuma T., Cho Y., … Jena D. Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV a-(AlGa)2O3 on m-plane sapphire. Science Advances. 2021;7(2): eabd5891. https://doi.org/10.1126/sciadv.abd5891

Seredin P. V., Domashevskaya P., Arsentyev I. N., Vinokurov D. A., Stankevich A. L., Prutskij T. Superstructured ordering in AlxGa1−xAs and GaxIn1–xP alloys. Semiconductors. 2013;47(1): 1–6. https://doi.org/10.1134/S106378261301020X

Domashevskaya E. P., Seredin P. V., Lukin A. N., Bityutskaya L. A., Grechkina M. V., Arsentyev I. N., Vinokurov D. A., Tarasov I. S. XRD, AFM and IR investigations of ordered AlGaAs2 phase in epitaxial AlxGa1–xAs/GaAs (100) heterostructures. Surface and Interface Analysis. 2006;38(4): 828–832. https://doi.org/10.1002/sia.2306

Seredin P. V., Lenshin A. S., Zolotukhin D. S., Arsentyev I. N., Nikolaev D. N., Zhabotinskiy A. V. Experimental study of structural and optical properties of integrated MOCVD GaAs/Si(001) heterostructures. Physica B: Condensed Matter. 2018;530: 30–37. https://doi.org/10.1016/j.physb.2017.11.028

Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Tarasov I. S. Structural features and surface morphology of AlxGay-In1-x-yAszP1-z/GaAs(1 0 0) heterostructures. Applied Surface Science. 2013;267: 181–184. https://doi.org/10.1016/j.apsusc.2012.09.053

Seredin P. V., Ternovaya V. E., Glotov A. V., Len’shin A. S., Arsent’ev I. N., Vinokurov D. A., Tarasov I. S., Leiste H., Prutskij T. X-ray diffraction studies of heterostructures based on solid solutions AlxGa1–xAsyP1–y:Si. Physics of the Solid State. 2013;55(10): 2161–2164. https://doi.org/10.1134/S1063783413100296

Li Z., Jiu L., Gong Y., Wang L., Zhang Y., Bai J., Wang T. Semi-polar (11-22) AlGaN on overgrown GaN on micro-rod templates: Simultaneous management of crystal quality improvement and cracking issue. Applied Physics Letters. 2017;110(8): 082103. https://doi.org/10.1063/1.4977094

Morkoç H. Handbook of nitride semiconductors and devices: materials properties, physics and growth. Volume 1. Wiley; 2008. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527628438

Collaboration: Authors and editors of the volumes III/17A-22A-41A1a. List of frequently used symbols and abbreviations, conversion factors In: Group IV Elements, IV-IV and III-V Compounds. Part a – Lattice Properties. O. Madelung, U. Rössler, M. Schulz (eds.). Berlin/Heidelberg: Springer-Verlag; 2001;a: 1–7. http://materials.springer.com/lb/docs/sm_lbs_978-3-540-31355-7_2

Harutyunyan V. S., Aivazyan A. P., Weber E. R., Kim Y., Park Y., Subramanya S. G. High-resolution x-ray diffraction strain-stress analysis of GaN/sapphire heterostructures. Journal of Physics D: Applied Physics. 2001;34(10A): A35–A39. https://doi.org/10.1088/0022-3727/34/10A/308

Zeng Y., Ning J., Zhang J., Jia Y., Yan C., Wang B., Wang D. Raman analysis of E2 (High) and A1 (LO) phonon to the stress-free GaN grown on sputtered AlN/graphene buffer layer. Applied Sciences. 2020;10(24): 8814. https://doi.org/10.3390/app10248814

Li P. G., Lei M., Tang W. H. Raman and photoluminescence properties of a-Al2O3 microcones with hierarchical and repetitive superstructure. Materials Letters. 2010;64(2): 161–163. https://doi.org/10.1016/j.matlet.2009.10.032

Lughi V., Clarke D. R. Defect and stress characterization of AlN films by Raman spectroscopy. Applied Physics Letters. 2006;89(24): 241911. https://doi.org/10.1063/1.2404938

Davydov V. Yu., Kitaev Yu. E., Goncharuk I. N., Smirnov A. N., Graul J., Semchinova O., Uffmann D., Smirnov M. B., Mirgorodsky A. P., Evarestov R. A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B. 1998;58(19): 12899–12907. https://doi.org/10.1103/PhysRevB.58.12899

Tripathy S., Chua S. J., Chen P., Miao Z. L. Micro-Raman investigation of strain in GaN and AlxGa1–xN/GaN heterostructures grown on Si(111). Journal of Applied Physics. 2002;92(7): 3503–3510. https://doi.org/10.1063/1.1502921

Seredin P. V., Glotov A. V., Ternovaya V. E., Domashevskaya E. P., Arsentyev I. N., Vavilova L. S., Tarasov I. S. Spinodal decomposition of GaxIn1−xAsyP1−y quaternary alloys. Semiconductors. 2011;45(11): 1433–1440. https://doi.org/10.1134/S1063782611110236

Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Tarasov I. S., Zhurbina I. A. The substructure and luminescence of lowtemperature AlGaAs/GaAs(100) heterostructures. Semiconductors. 2010;44(2): 184–188. https://doi.org/10.1134/S1063782610020089

Seredin P. V., Lenshin A. S., Zolotukhin D. S., Arsentyev I. N., Zhabotinskiy A. V., Nikolaev D. N. Impact of the substrate misorientation and its preliminary etching on the structural and optical properties of integrated GaAs/Si MOCVD heterostructures. Physica E: Low-dimensional Systems and Nanostructures. 2018;97: 218–225. https://doi.org/10.1016/j.physe.2017.11.018

Choi S., Heller E., Dorsey D., Vetury R., Graham S. Analysis of the residual stress distribution in AlGaN/GaN high electron mobility transistors. Journal of Applied Physics. 2013;113(9): 093510. https://doi.org/10.1063/1.4794009

Published
2023-03-09
How to Cite
Seredin, P. V., Kurilo, N. A., Ali, O. R., Buylov, N. S., Goloshchapov, D. L., Ivkov, S. A., Lenshin, A. S., Arsentyev, I. N., Nashchekin, A. V., Sharofidinov, S. S., Mizerov, A. M., Sobolev, M. S., Pirogov, E. V., & Semeykin, I. V. (2023). Study of semi-polar gallium nitride grown on m-sapphire by chloride vapor-phase epitaxy. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(1), 103-111. https://doi.org/10.17308/kcmf.2023.25/10978
Section
Original articles

Most read articles by the same author(s)