Органическое отравление анионообменной и биполярной мембран при разделении аминокислоты и сахарозы методом электродиализа
Аннотация
Исследовано поведение анионообменной мембраны МА-41 и биполярной мембраны МБ-2 во времени в ходе электродиализа раствора, содержащего тирозин и сахарозу. Установлены изменения вольт-амперных, транспортных, а также структурных характеристик ионообменных мембран. Исследование эволюции характеристик мембран при длительном контакте с растворами, содержащими ароматическую аминокислоту и дисахарид, направлено на углубление понимания и поиск решений проблемы органического отравления мембран, осложняющего электромембранное разделение компонентов раствора микробиологического синтеза аминокислот.
Обнаружено, что потоки тирозина и сахарозы через мембрану МА-41, измеренные после ее работы при электродиализе в течение 50 часов, достигают больших значений, чем в первые часы эксплуатации после установления стационарного состояния в системе. Однако отмечено, что последующее более длительное использование приводит к снижению потоков компонентов через мембрану МА-41, явно выраженному в интенсивном токовом режиме.
Такое снижение массопереноса, а также обнаруженное увеличение падения напряжения на мембранах МБ-2, МА‑41 и уменьшение достигаемых значений эффективного числа переноса ионов ОН- для мембраны МА-41 связаны с явлением органического отравления, подтверждаемого выявленными структурными изменениями ионообменного материала, которые становятся значимыми после длительного контакта (более 60 часов) со смешанным раствором тирозина и сахарозы и связаны с накоплением аминокислоты и продукта ее окисления – 3,4-тигидроксифенилаланина в фазе мембраны, а также с уменьшением содержания сахарозы, сорбированной мембраной.
Скачивания
Литература
Samonina A. S. Obtaining amino acids by the biotechnological method. Production stages. Application in medical practice*. In: Actual issues of pharmaceutical and natural sciences: Collection of articles of the All-Russian student scientific and practical conference with international participation, May 17–21, 2021, Irkutsk. Irkutsk: Irkutsk State Medical University Publ.; 2021, p. 313–316. (In Russ.). Available at: https://elibrary.ru/item.asp?id=46592328
Suwal Sh. Doyen A., Bazinet L. Characterization of protein, peptide and amino acid fouling on ionexchange and filtration membranes: review of current and recently developed methods. Journal of Membrane Science. 2015;496: 267–283. https://doi.org/10.1016/j.memsci.2015.08.056
Bykov V. I., Ilyina S. I., Loginov V. Ya., Ravichev L. V., Svitzov A. A. Electrodialysis: history and development prospects. Bulletin of the Technological University. 2021;24(7): 5–10. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=46423712
Xu T., Huang C. Electrodialysis-based separation technologies: a critical review. AIChE Journal. 2008;54: 3147–3159. https://doi.org/10.1002/aic.11643
Lazarova Z., Beschkov V., Velizarov S. Electromembrane separations in biotechnology. Physical Sciences Reviews. 2020;5: 1–11. https://doi.org/10.1515/psr-2018-0063
Wang M., Kuang S., Wang X., … Zhang Y. Transport of amino acids in soy sauce desalination process by electrodialysis. Membranes. 2021;11(6): 408. https://doi.org/10.3390/membranes11060408
Zeppenfeld S., van Pinxteren M., Engel A. A protocol for quantifying mono- and polysaccharides in seawater and related saline matrices by electro-dialysis (ED) – combined with HPAEC-PAD. Ocean Science. 2020;16: 817–830. https://doi.org/10.5194/os-2020-2
Ge S., Zhang Z., Yan H., … Wang Y. Electrodialytic desalination of tobacco sheet extract: membrane fouling mechanism and mitigation strategies. Membranes. 2020;11: 14. https://doi.org/10.3390/membranes10090245
Thang V. H., Koschuh W., Kulbe K. D. Desalination of high salt content mixture by two-stage electrodialysis as the first step of separating valuable substances from grass silage. Desalination. 2004;162(1-3): 343–353. https://doi.org/10.1016/S0011-9164(04)00068-2
Bazinet L., Geoffroy T. R. Electrodialytic processes: market overview, membrane phenomena, recent developments and sustainable strategies. Membranes. 2020;10: 221. https://doi.org/10.3390/membranes10090221
Campione A., Gurreri L., Ciofalo M., Micale G., Tamburini A., Cipollina A. Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications. Desalination. 2018;434: 121–160. https://doi.org/10.1016/j.desal.2017.12.044
Gurreri L., Tamburini A., Cipollina A., Micale G. Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives. Membranes. 2020;10: 146. https://doi.org/10.3390/membranes10070146
Pourcelly G. Electrodialysis with bipolar membranes: principles, optimization, and applications. Russian Journal of Electrochemistry. 2002;38(8): 919–926. https://doi.org/10.1023/A:1016882216287
Mani K. N. Electrodialysis water splitting technology. Journal of Membrane Science. 1991;58(2): 117-138. https://doi.org/10.1016/s0376-7388(00)82450-3
Medina-Collana J. T., Rosales-Huamani J. A., Franco-Gonzales E. J., Montaño-Pisfil J. A. Factors influencing the formation of salicylic acid by bipolar membranes electrodialysis. Membranes. 2022;12(2): 149. https://doi.org/10.3390/membranes12020149 16. Pelletier S., Serre E., Mikhaylin S., Bazinet L. Optimization of cranberry juice deacidification by electrodialysis with bipolar membrane: impact of pulsed electric field conditions. Separation and Purification Technology. 2017;186: 106–116. https://doi.org/10.1016/j.seppur.2017.04.054
Kharina A. Y., Charushina O. E., Eliseeva T. V. Specific features of the mass transport of the components during electrodialysis of an aromatic amino acid–mineral salt–sucrose solution. Membranes and Membrane Technologies. 2021;4: 127–132. https://doi.org/10.1134/S2517751622020068
Eliseeva T. V., Krisilova E. V., Shaposhnik V. A., Bukhovets A. E. Recovery and concentration of basic amino cids by electrodialysis with bipolar membranes. Desalination and Water Treatment. 2010;14(1-3): 196–200. https://doi.org/10.5004/dwt.2010.1028
Eliseeva T. V., Tekuchev A. Yu., Shaposhnik V. A., Lushchik I. G. Electrodialysis of amino acid solutions with bipolar ion-exchange membranes. Russian Journal of Electrochemistry. 2001;37(4): 423-426. https://doi.org/10.1023/A:1016642510229
Sheldeshov N. V, Zabolotsky V. I. Bipolar ionexchange membranes. Receipt. Properties. Application. Membranes and membrane technologies*. Moscow: Nauchnyi mir Publ.; 2013. 70-115. (In Russ.)
Strathmann H. Ion-exchange membrane separation processes. Amsterdam: Elsevier; 2004. 348 p. https://doi.org/10.1016/s0927-5193(04)80031-7
Zabolotsky V. I., Nikonenko V. V. Ion transport in membranes*. Мoscow: Nauka Publ.; 1996. 392 p. (In Russ.)
Tanaka Y. Ion exchange membranes. Amsterdam: Elsevier Science; 2015. 522 p.
Apel P. Y., Velizarov S., Volkov A. V., … Yaroslavtsev A. B. Fouling and membrane degradation in electromembrane and baromembrane processes. Membranes and Membrane Technologies. 2022;4: 69–92. https://doi.org/10.1134/S2517751622020032
Kharina A. Yu., Eliseeva T. V. Cation-exchange membrane MK-40 characteristics in electrodialysis of mixed solutions of mineral salt and amino acid. Sorption and chromatography processes. 2017;17(1); 148–155. (In Russ., abstract in Eng.). https://doi.org/10.17308/sorpchrom.2017.17/364
Eliseeva T. V., Kharina A. Y. Voltammetric and transport characteristics of anion-exchange membranes during electrodialysis of solutions containing alkylaromatic amino acid and a mineral salt. Russian Journal of Electrochemistry. 2015;51(1): 63–69. https://doi.org/10.1134/S1023193515010048
Mikhaylin S., Bazinet L. Fouling on ionexchange membranes: classification, characterization and strategies of prevention and control. Advances in Colloid and Interface Science. 2016;229: 34–56. https://doi.org/10.1016/j.cis.2015.12.006
Meister A. Biochemistry of the amino acids. New Jork: Academic Press; 1957. 485 p.
Jakubke H.-D., Jeschkeit H. Aminosauren, Peptide, Proteine. Berlin: 1982.
Chemical encyclopedia: in five volumes. N. S. Zefirov (ed.) Moscow: “Great Russian Encyclopedia”, 1995. V. 4. p. 295. (In Russ.)
Berezina N. P. Kononenko N. A., Dvorkina G. A., Sheldeshov N. V. Physicochemical properties of ionexchange materials.*.Krasnodar: Kuban. Gos. Univ. Publ.; 1999. 82 p. (In Russ.)
Kotova D. L., Krysanova, T. A., Eliseeva, T. V. Spectrophotometric determination of amino acids in aqueous solutions*. Voronezh: Voronezh State University Publ.; 2004. 115 p. (In Russ.)
Lur’e I. S. Guidance on technical control in the confectionery industry*. Moscow: Pishchevaya promyshlennost’ Publ.; 1978. p. 56-59.
Nikonenko V. V., Pismenskaya N. D., Belova E. I.; Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science. 2010;160: 101–123. https://doi.org/10.1016/j.cis.2010.08.001
Eliseeva T. V., Shaposhnik V. A. Effects of circulation and facilitated electromigration of amino acids in electrodialysis with ion-exchange membranes. Russian Journal of Electrochemistry. 2000;36(1): 64-67. https://doi.org/10.1007/BF02757798
Dobrevsky J., Zvezdov A. Investigation of pore structure of ion exchange membranes. Desalination. 1979;28(3): 283-289. https://doi.org/10.1016/s0011-9164(00)82235-3
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.