Влияние температуры на межфазный слой в МОП-структурах (Pt/TiO2/Si)

  • Х.Д. Чандрашекхара Государственный научный колледж (автономный), физический факультет, Хассан 573201, Карнатака, Индия https://orcid.org/0000-0001-9976-3128
  • П. Пурнима Государственный научный колледж (автономный), физический факультет, Хассан 573201, Карнатака, Индия https://orcid.org/0000-0001-7685-6778
Ключевые слова: ток утечки, коэффициент идеальности, напряжение плоских зон, захваченный заряд в оксиде

Аннотация

    В данной работе представлены вольт-амперные и вольт-фарадные характеристики МОП-структуры (Pt/TiO2/Si). В рамках вольт-амперных характеристик (ВАХ) оценивались различные электрические параметры, такие как коэффициент идеальности (n), высота барьера (FB), ток утечки (Ic) и ток насыщения (Io), которые в дальнейшем анализировались с помощью функций Чонга.
    Установлено, что данные электрические параметры изменяются в зависимости от термообработки. Были оценены и проанализированы вольт-фарадные характеристики (ВФХ), напряжение плоских зон (VFB), поверхностная плотность ловушек (Dit), эффективная концентрация носителей заряда (Neff) и величина захваченного заряда в оксиде (QOT). Изменение данных величин в зависимости от температуры отжига было связано с реструктуризацией и перегруппировкой атомов TiO2/SiO2 на границе раздела металл/кремний. Петля гистерезиса при напряжении против часовой стрелки от –1 В до 1 В на частоте 1 МГц после термообработки при 600 °C показывает область интенсивного накопления, что может быть связано с уменьшением поверхностного захваченного заряда и свободных связей.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Х.Д. Чандрашекхара, Государственный научный колледж (автономный), физический факультет, Хассан 573201, Карнатака, Индия

кандидат наук, доцент, физический факультет, Государственный научный
колледж, Хассан (Карнатака, Индия)

П. Пурнима, Государственный научный колледж (автономный), физический факультет, Хассан 573201, Карнатака, Индия

доцент, физический факультет, Государственный научный колледж, Хассан (Карнатака, Индия)

Литература

Nakaruk A., Ragazzon D., Sorrel C. C. Anatase–rutile transformation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films. 2010;518(14): 3735–3742. https://doi.org/10.1016/j.tsf.2009.10.109

Li W., Ni C., Lin H., Huang C. P., Ismat Shah S. Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics. 2004;96(11): 6663–6668. https://doi.org/10.1063/1.1807520

Murad E. Raman and X-ray diffraction data on anatase in fired kaolins. Clays and Clay Minerals.2003;51(6); 689–692. https://doi.org/10.1346/cmn.203.0510611

Rausch N., Burte E. P. Thin TiO2 films prepared by low pressure chemical vapor deposition. Journal of The Electrochemical Society. 1993;140(1): 145–149. https://doi.org/10.1149/1.2056076

Kemell M., Pore V., Ritala M., Leskelä M., LindénM. Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. Journal of the American Chemical Society. 2005;127(41): 14178–14179. https://doi.org/10.1021/ja0532887

Kim D. J., Hahn S. H., Oh S. H., Kim E. J. Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating. Materials Letters. 2002;57(2): 355–360. https://doi.org/10.1016/s0167-577x(02)00790-5

Suda Y., Kawasaki H., Ueda T., Ohshima T. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films. 2004;453–454: 162–166. https://doi.org/10.1016/j.tsf.2003.11.185

Wang H., Chen L., Wang J., Sun Q., Zhao Y. A micro oxygen sensor based on a nano sol-gel TiO2 thin film. Sensors. 2014;14(9): 16423–16433. https://doi.org/10.3390/s140916423

Kikuchi H., Kitano M., Takeuchi M., Matsuoka M., Anpo M., Kamat P. V. Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method. The Journal of Physical Chemistry B. 2006;110(11): 5537–5541. https://doi.org/10.1021/jp058262g

Chandrashekara H. D., Angadi B., Shashidhar R., Murthy L. C. S., Poornima P. Optical properties of pseudo binary oxides (TiO2)1–x-(Al2O3)x thin films prepared by spray pyrolysis technique. Materials Today: Proceedings. 2006;3(6): 2027–2034. https://doi.org/10.1016/j.matpr.2016.04.105

Khan M. I., Imran S., Shahnawaz Saleem M., Ur Rehman S. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films. Results in Physics. 2018;8: 249–252. https://doi.org/10.1016/j.rinp.2017.12.030

Ramana C., Becker U., Shutthanandan V., Julien C. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics. Geochemical Transactions. 2008;9(1). https://doi.org/10.1186/1467-4866-9-8

Chandrashekara H. D., Angadi B., Shashidhar R., Murthy L. C. S., Poornima P. (2016). Isochronal effect of optical studies of TiO2 thin films deposited by spray pyrolysis technique. Advanced Science Letters.2016; 22(4): 739–744. https://doi.org/10.1166/asl.2016.6975

Kumar A., Sharma K. K., Chand S., Kumar A. Investigation of barrier inhomogeneities in I-V and C-V characteristics of Ni/n-TiO2/p-Si/Al heterostructure in wide temperature range. Superlattices and Microstructures. 2018;122: 304–315. https://doi.org/10.1016/j.spmi.2018.07.034

Kern W. Hand book of semiconductor cleaning technology. Noyes Publications; 1993. 623 p.

Sze S. M. Physics of semiconductor devices. New York: John Wiley and Sons; 1981. 868 p.

Gümüş A., Türüt A., Yalçin N. Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs. Journal of Applied Physics. 2002;91(1): 245–250. https://doi.org/10.1063/1.1424054

Pakma O., Serin N., Serin T., Altındal Ş. The effects of preparation temperature on the main electrical parameters of Al/TiO2/p-Si (MIS) structures by using sol–gel method. Journal of Sol-Gel Science and Technology. 2009;50(1): 28–34. https://doi.org/10.1007/s10971-009-1895-4

Yen C.-F., Lee M.-K. Low equivalent oxide thickness of TiO2/GaAs MOS capacitor. Solid-State Electronics. 2012;73: 56–59. https://doi.org/10.1016/j.sse.2012.03.007

Rathee D., Kumar M., Arya S. K. (2012). Deposition of nanocrystalline thin TiO2 films for MOS capacitors using Sol–Gel spin method with Pt and Al top electrodes. Solid-State Electronics. 2012;76: 71–76. https://doi.org/10.1016/j.sse.2012.04.041

Wei D., Hossain T., Garces N. Y., … Edgar J. H. Influence of atomic layer deposition temperatures on TiO2/n-Si MOS capacitor. ECS Journal of Solid State Science and Technology. 2013;2(5): N110–N114. https://doi.org/10.1149/2.010305jss

Chiu H.-C., Lin C.-K., Lin C.-W., Lai C.-S. Investigation of surface pretreatments on GaAs and memory characteristics of MOS capacitors embedded with Au nano-particles. Microelectronics Reliability. 2012;52(11): 2592–2596. https://doi.org/10.1016/j.microrel.2012.05.002

Murray H., Martin P. A unified channel charges expression for analytic MOSFET modeling. Active and Passive Electronic Components. 2012; 1–12. https://doi.org/10.1155/2012/652478

Yen C.-F., Lee M.-K. Low equivalent oxide thickness of TiO2/GaAs MOS capacitor. Solid-State Electronics. 2012;73: 56–59. https://doi.org/10.1016/j.sse.2012.03.007

Nicollian E. H, Brews J. R. MOS (Metal Oxide Semiconductor) physics and pechnology. John Wiley & Sons; 1982. 928 p.

Schroder D. K. Semiconductor material and device characterization. John Wiley & Sons; 2006. 800 p.

Опубликован
2023-07-07
Как цитировать
Чандрашекхара, Х., & Пурнима, П. (2023). Влияние температуры на межфазный слой в МОП-структурах (Pt/TiO2/Si). Конденсированные среды и межфазные границы, 25(3), 415-423. https://doi.org/10.17308/kcmf.2023.25/11266
Раздел
Оригинальные статьи