Энергия парного взаимодействия пересекающихся дефектов дилатационного и дисклинационного типа
Аннотация
В настоящей работе исследуется упругое взаимодействие пересекающихся дефектов дилатационного и дисклинационного типа в приближении линейно-изотропной среды.
В рамках теории собственных деформаций найдены аналитические выражения, описывающие парное взаимодействие пересекающихся дилатационных нитей и пересекающихся клиновых дисклинаций. Показано, что энергия взаимодействия таких дефектов монотонно зависит от угла между ними: наибольшей энергией взаимодействия обладают дефекты, линии которых сонаправлены, наименьшей энергией взаимодействия – дефекты, линии которых ортогональны. Кроме этого, показано, что энергия взаимодействия пересекающихся клиновых дисклинаций сильно зависит от упругих свойств среды: чем меньше коэффициент Пуассона, тем меньше энергия парного взаимодействия дисклинаций.
Полученные аналитические выражения представляют практическую ценность для описания процессов релаксации остаточных напряжений в неоднородных структурах с пентагональной симметрией, в частности, в икосаэдрических частицах
Скачивания
Литература
Martinez A. D., Fioretti A. N., Toberer E. S., Tamboli A. C. Synthesis, structure, and optoelectronic properties of II–IV–V 2 materials. Journal of Materials Chemistry A. 2017;5(23): 11418–11435. https://doi.org/10.1039/C7TA00406K
Zhou H., Xu J., Liu X., … Fan T. Bio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulation. Advanced Functional Materials. 2018;28(24): 1705309. https://doi.org/10.1002/adfm.201705309
Shao L., Zhuo X., Wang J. Advanced plasmonic materials for dynamic color display. Advanced Materials. 2018;30(16): 1704338. https://doi.org/10.1002/adma.201704338
Matthews J. W., Blakeslee A. E. Defects in epitaxial multilayers: I. Misfit dislocations. Journal of Crystal Growth. 1984;27: 118–125. https://doi.org/10.1016/S0022-0248(74)80055-2
Freund L. B., Suresh S. Thin film materials: stress, defect formation and surface evolution. Cambridge: Cambridge University Press; 2003. 803 p. https://doi.org/10.1017/CBO9780511754715
Gutkin M. Yu., Kolesnikova A. L., Romanov A. E. Nanomechanics of stress relaxation in composite low-imensional structures. Encyclopedia of ContinuumMechanics. 2020: 1778–1799. https://doi.org/10.1007/978-3-662-55771-6_161
Smirnov A. M., Kremleva A. V., Ivanov A. Yu., … Romanov A. E. Stress-strain state and piezoelectric polarization in orthorhombic Ga2O3 thin films depending on growth orientation. Materials and Design. 2023;226: 111616. https://doi.org/10.1016/j.matdes.2023.111616
Kukushkin S. A., Osipov A. V. A new mechanism of elastic energy relaxation in heteroepitaxy of monocrystalline films: Interaction of point defects and dilatation dipoles. Mechanics of Solids. 2013;48: 216–227. https://doi.org/10.3103/S0025654413020143
Ramdani R., Hounkpati V., Chen J., Ruterana P. Stress relaxation in III-V nitrides: investigation of metallic atoms interaction with the N-vacancy. Europhysics Letters. 2022;137(6): 66003. https://doi.org/10.1209/0295-5075/ac6067
Gutkin M. Yu., Kolesnikova A. L., Romanov A. E. Misfit dislocations and other defects in thin films. Materials Science and Engineering: A. 1993;164(1-2): 433–437. https://doi.org/10.1016/0921-5093(93)90707-L
Bobylev S. V., Morozov N. F., Ovid’Ko I. A., Semenov B. N., Sheinerman A. G. Misfit dislocation configurations at interphase boundaries between misoriented crystals in nanoscale film-substrate systems. Reviews on Advanced Materials Science.2012;32(1): 24–33.
Gutkin M. Yu., Kolesnikova A. L., Krasnitckii S. A., Romanov A. E., Shalkovskii A. G. Misfit dislocation loops in hollow core-shell nanoparticles. Scripta Materialia. 2014;83: 1–4. https://doi.org/10.1016/j.scriptamat.2014.03.005
Kukushkin S. A., Osipov A. V., Bessolov V. N., Konenkova E. V., Panteleev V. N. Misfit dislocation locking and rotation during gallium nitride growth on SiC/Si substrates. Physics of the Solid State. 2017;59(4): 674–681. https://doi.org/10.1134/S1063783417040114
Krasnitckii S. A., Smirnov A. M., Gutkin M. Yu. Axial misfit stress relaxation in core-shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops. Journal of Materials Science. 2020;55: 9198–9210. https://doi.org/10.1007/s10853-020-04401-3
Smirnov A. M., Krasnitckii S. A., Gutkin M. Yu. Generation of misfit dislocations in a core-shell nanowire near the edge of prismatic core. Acta Materialia. 2020;186: 494–510. https://doi.org/10.1016/j.actamat.2020.01.018
Smirnov A. M., Krasnitckii S. A., Rochas S. S., Gutkin M. Yu. Critical Conditions of Dislocation Generation in Core-Shell Nanowires: A Review. Reviews on Advanced Materials and Technologies. 2020;2(3): 19–43. https://doi.org10.17586/2687-0568-2020-2-3-19-4
Smirnov A. M., Young E. C., Bougrov V. E., Speck J. S., Romanov A. E. Stress relaxation in semipolar and nonpolar III-nitride heterostructures by formation of misfit dislocations of various origin. Journal of Applied Physics. 2019;126(24): 245104. https://doi.org/10.1063/1.5126195
Sheinerman A. G., Gutkin M. Yu. Misfit disclinations and dislocation walls in a two-phase cylindrical composite. Physica Status Solidi (a). 2001;184(2): 485–505. https://doi.org/10.1002/1521-396X(200104)184:2<485::AID-PSSA485>3.0.CO;2-4
Kolesnikova A. L., Ovidko I. A., Romanov A. E. Misfit disclination structures in nanocrystalline and polycrystalline films. Solid State Phenomena. 2002;87: 265–276. https://doi.org/10.4028/www.scientific.net/SSP.87.265
Skiba N. V., Ovid’ko I. A., Sheinerman A. G. Misfit disclination dipoles in nanocrystalline films and coatings. Physics of the Solid State. 2009;51(2): 280–285. https://doi.org/10.1134/S1063783409020127
Telyatnik R. S., Osipov A. V., Kukushkin S. A. Pore-and delamination-induced mismatch strain relaxation and conditions for the formation of dislocations, cracks, and buckles in the epitaxial AlN (0001)/SiC/Si (111) heterostructure. Physics of the Solid State. 5015;57(1): 162–172. https://doi.org/10.1134/S106378341501031X
Argunova T. S., Gutkin M. Yu., Mokhov E. N., Kazarova O. P., Lim J. H., Shcheglov M. P. Prevention of AlN crystal from cracking on SiC substrates by evaporation of the substrates. Physics of the Solid State. 2015;57(12): 2473–2478. https://doi.org/10.1134/S1063783415120057
Kukushkin S. A., Osipov A. V., Rozhavskaya M. M., Myasoedov A. V., Troshkov S. I., Lundin V. V., Sorokin L. M., Tsatsul’nikov A. F. Growth and structure of GaN layers on silicon carbide synthesized on a Si substrate by the substitution of atoms: a model of the formation of V-defects during the growth of GaN. Physics of the Solid State. 2015;57(9): 1899–1907. https://doi.org/10.1134/S1063783415090218
Schmidt V., McIntyre P. C., Gцsele U. Morphological instability of misfit-strained core-shell nanowires. Physical Review B. 2008;77(23): 235302. https://doi.org/10.1103/PhysRevB.77.235302
Hofmeister H. Shape variations and anisotropic growth of multiply twinned nanoparticles. Zeitschrift fer Kristallographie. 2009;224(11): 528–538. https://doi.org/10.1524/zkri.2009.1034
Ruditskiy A., Peng H. C., Xia Y. Shape-controlled metal nanocrystals for heterogeneous catalysis. Annual Rview of Chemical and Biomolecular Engineering. 2016;7: 327–348. https://doi.org/10.1146/annurev-chembioeng-080615-034503
Romanov A. E., Kolesnikova A. L. Application of disclination concept to solid structures. Progress in Materials Science. 2009;54(6): 740–769. https://doi.org/10.1016/j.pmatsci.2009.03.002
Romanov A. E., Kolesnikova A. L. Elasticity boundary-value problems for straight wedge disclinations. A review on methods and results. Reviews on Advanced Materials and Technologies. 2021;3(1): 55–95. https://doi.org/10.17586/2687-0568-2021-3-1-55-95
Yasnikov I. S., Vikarchuk A. A. Voids in icosahedral small particles of an electrolytic metal. JETP Letters. 2006;83(1): 42–45. https://doi.org/10.1134/S0021364006010103
Huang J., Yan Y., Li X., Qiao X., Wu X., Li J., Shen R., Yang D., Zhang H. Unexpected Kirkendall effect in twinned icosahedral nanocrystals driven by strain gradient. Nano Research. 2020;13: 2641–2649. https://doi.org/10.1007/s12274-020-2903-9
Romanov A. E., Polonsky I. A., Gryaznov V. G., Nepijko S. A., Junghanns T., Vitrykhovski N. J. Voids and channels in pentagonal crystals. Journal of Crystal Growth. 1993;129(3-4): 691–698. https://doi.org/10.1016/0022-0248(93)90505-Q
Gutkin M. Yu., Panpurin, S. N. Spontaneous formation and equilibrium distribution of cylindrical quantum dots in atomically inhomogeneous pentagonal nanowires. Journal of Macromolecular Science, Part B. 2013;52(12): 1756–1769. https://doi.org/10.1080/00222348.2013.808929
Krasnitckii S. A., Gutkin M. Yu., Kolesnikova A. L., Romanov A. E. Formation of a pore as stress relaxation mechanism in decahedral small particles. Letters on Materials. 2022;12(2): 137–141. https://doi.org/10.22226/2410-3535-2022-2-137-141
Khramov A. S., Krasnitckii S. A., Smirnov A. M., Gutkin M. Yu. The void evolution kinetics driven by residual stress in icosahedral particles. Materials Physics and Mechanics. 2022;50(3): 401–409. https://doi.org/10.18149/MPM.5032022_4
Mura T. Micromechanics of defects in solids. Boston: Martinus Nijhoff Publishers; 1987. 587 p.
Kolesnikova A. L., Soroka R. M., Romanov A. E. Defects in the elastic continuum: classification, fields and physical analogies. Materials Physics and Mechanics. 2013;17(1): 71–91.
De Wit R. Partial disclinations. Journal of Physics C: Solid State Physics. 1972;5(5): 529–534. https://doi.org/10.1088/0022-3719/5/5/004
Vladimirov V. I., Romanov A. E. Disclinations in Crystals. Leningrad: Izdatel’stvo Nauka; 1986. 224p.
Kolesnikova A. L., Gutkin M. Yi., Proskura A. V., Morozov N. F., Romanov A. E. Elastic fields of straight wedge disclinations axially piercing bodies with spherical free surfaces. International Journal of Solids and Structures. 2016;99: 82–96. https://doi.org/10.1016/j.ijsolstr.2016.06.029
Prudnikov A. P., Brychkov I. A., Marichev O. I. Integrals and series: special functions (Vol. 2). Amsterdam: Gordon and Breach Science Publishers; 1998. 740p.
Polonsky I. A., Romanov A. E., Gryaznov V. G., Kaprelov A. M. Disclination in an elastic sphere. Philosophical Magazine A. 1991;64(2): 281–287. https://doi.org/10.1080/01418619108221185
Mayoral A., Barron H., Estrada-Salas R., Vazquez-Duran A., Josй-Yacamбn M. Nanoparticle stability from the nano to the meso interval. Nanoscale. 2010;2(3): 335–342. https://doi.org/10.1039/B9NR00287A
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.