Подтверждение методом картирования тока, наведенного электронным пучком, самопроизвольного легирования GaN нитевидных нанокристаллов из вицинальной подложки SiC/Si
Аннотация
Данная работа посвящена подтверждению спонтанного легирования GaN нитевидных нанокристаллов, выращенных на вицинальных гибридных подложках SiC/Si, методом картирования тока, наведенного электронным пучком.
Нитевидные нанокристаллы (ННК) GaN выращивались на сингулярных и вицинальных подложках SiC/Si методом молекулярно-пучковой эпитаксии с плазменной активацией азота. Морфологические свойства нитевидных нанокристаллов исследуются методами растровой электронной микроскопии. Электрофизические свойства выращенных наноструктур исследуются методом картирования тока, наведенного электронным пучком.
Методом картирования тока, наведенного электронным пучком, нами было подтверждено спонтанное легирование GaN ННК, выращенных на вицинальных пластинах SiC/Si. В свою очередь, было показано, что выращенные на сингулярных подложках SiC/Si GaN ННК не демонстрирует сигнала наведённого тока, что указывает на отсутствие легирования в таком ННК
Скачивания
Литература
Kente T., Mhlanga S. D. Gallium nitride nanostructures: Synthesis, characterization and applications. Journal of Crystal Growth. 2016;444: 55–72. https://doi.org/10.1016/j.jcrysgro.2016.03.033
Patra S. K., Schulz S. Electrostatic built-in fields in wurtzite III-N nanostructures: Impact of growth plane on second-order piezoelectricity. Physical Review B. 2017;96(15): 155307. http://dx.doi.org/10.1103/PhysRevB.96.155307
Gridchin V. O., Kotlyar K. P., Reznik R. R., Borodin B. R., Kudryashov D. A., Alekseev P. A., Cirlin G. E. Electrical properties of InGaN nanostructures with branched morphology synthesized via MBE on p-type Si (111). Journal of Physics: Conference Series. 2020;1695(1): 012030. https://doi.org/10.1088/1742-6596/1695/1/012030
Pearton S. J., Ren F. GaN electronics. Advanced Materials. 2000;12(21): 1571–1580. https://doi.org/10.1002/1521-4095(200011)12:21<1571::AIDADMA1571>3.0.CO;2-T
Chen F., Ji X., Lau S. P. Recent progress in group III-nitride nanostructures: From materials to applications. Materials Science and Engineering: R: Reports. 2020;142: 100578. https://doi.org/10.1016/j.mser.2020.100578
Gridchin V. O., Kotlyar K. P., Reznik R. R., … Cirlin G. G. Multi-colour light emission from InGaN nanowires monolithically grown on Si substrate by MBE. Nanotechnology. 2021;32(33): 335604. https://doi.org/10.1088/1361-6528/ac0027
Tijent F. Z., Voss P., Faqir M. Recent advances in InGaN nanowires for hydrogen production using photoelectrochemical water splitting. Materials Today Energy. 2023;33: 101275. https://doi.org/10.1016/j.mtener.2023.101275
Mäntynen H., Anttu N., Sun Z., Lipsanen H. Single-photon sources with quantum dots in III–V nanowires. Nanophotonics. 2019;8(5): 747–769. https://doi.org/10.1515/nanoph-2019-0007
Leandro L., Gunnarsson C. P., Reznik R., … Akopian, N. Nanowire quantum dots tuned to atomic resonances. Nano Letters. 2018;18(11): 7217–7221. https://doi.org/10.1021/acs.nanolett.8b03363
Heiss M., Fontana Y., Gustafsson A., … Fontcuberta i Morral A. Self-assembled quantum dots in a nanowire system for quantum photonics. Nature Materials. 2013;12(5): 439–444. https://doi.org/10.1038/NMAT3557
Deshpande S., Frost T., Yan L., … Bhattacharya P. Formation and nature of InGaN quantum dots in GaN nanowires. Nano Letters. 2015;15(3): 1647–1653. https://doi.org/10.1021/nl5041989
Consonni V. Self-induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms. Physica Status Solidi (RRL)–Rapid Research Letters. 2013;7(10): 699–712. https://doi.org/10.1002/pssr.201307237
Arthur J. R. Molecular beam epitaxy. Surface Science. 2002;500(1-3): 189–217.
Dubrovskii V. G. Theory of diffusion-induced selective area growth of III-V nanostructures. Physical Review Materials. 2023;7(2): 026001. https://doi.org/10.1103/PhysRevMaterials.7.026001
Tribu A., Sallen G., Aichele T., … Kheng K. A high-temperature single-photon source from nanowire quantum dots. Nano Letters. 2008;8(12): 4326–4329.https://doi.org/10.1021/nl802160z
Alekseev P. A., Sharov V. A., … Lähderanta E. Piezoelectric current generation in wurtzite GaAs nanowires. Physica Status Solidi (RRL) – Rapid Research Letters. 2018;12(1): 1700358. https://doi.org/10.1002/pssr.201700358
Cirlin G. E., Reznik R. R., Shtrom I. V., … Akopian N. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates. Journal of Physics D: Applied Physics. 2017;50(48): 484003. https://doi.org/10.1088/1361-6463/aa9169
Cirlin G. E., Dubrovskii V. G., Soshnikov I. P., … Glas F. Critical diameters and temperature domains for MBE growth of III–V nanowires on lattice mismatched substrates. Physica Status Solidi (RRL) – Rapid Research Letters. 2009:3(4): 112-114. https://doi.org/10.1002/pssr.200903057
Talalaev V. G., Tomm J. W., Kukushkin S. A., … Cirlin G. E. Ascending Si diffusion into growing GaN nanowires from the SiC/Si substrate: up to the solubility limit and beyond. Nanotechnology. 2020;31(29): 294003. https://doi.org/10.1088/1361-6528/ab83b6
Lavenus P., Messanvi A., Rigutti L. … Tchernycheva M. Experimental and theoretical analysis of transport properties of core–shell wire light emitting diodes probed by electron beam induced current microscopy. Nanotechnology. 2014;25(25): 255201. https://doi.org/10.1088/0957-4484/25/25/255201
Yakimov E. B., Borisov S. S., Zaitsev S. I. EBIC measurements of small diffusion length in semiconductor structures. Semiconductors. 2007;41: 411–413. https://doi.org/10.1134/s1063782607040094
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.