Создание гетероструктуры a-Ga2O3:Sn/a-Cr2O3/a-Al2O3 методами газофазной эпитаксии
Аннотация
Оксид хрома со структурой корунда (a-Cr2O3), обладающий возможностью иметь проводимость p-типа, является привлекательным кандидатом для создания высококачественных p-n-гетеропереходов с корундоподобным оксидом галлия (a-Ga2O3). При изготовлении гетероструктуры использовались два метода выращивания из газовой фазы (CVD). Слой a-Cr2O3 толщиной ~ 0.2 мкм был выращен на сапфировой подложке (0001) с использованием метода ультразвукового осаждения мелкодисперсного аэрозоля (mist-CVD) при температуре 800 °C. Обнаружено, что полученный слой обладает высокой морфологической однородностью и низкой шероховатостью, что приемлемо для дальнейших эпитаксиальных процессов. В дальнейшем слой a-Ga2O3, легированный Sn, толщиной ~ 1.5 мкм
был выращен на слое a-Cr2O3 с использованием метода гидридной парофазной эпитаксии (HVPE) при 500 °C. Показана возможность изготовления данной гетероструктуры с заданной толщиной слоя и приемлемой морфологией поверхности методами CVD
Скачивания
Литература
Hasan M. N., Swinnich E., Seo J. H. Recent progress in gallium oxide and diamond based high power and high-frequency electronics. International Journal of High Speed Electronics and Systems. 2019;28(01n02): 1940004. https://doi.org/10.1142/S0129156419400044
Yadava N., Chauhan R. K. Review—recent advances in designing gallium oxide MOSFET for RF application. ECS Journal of Solid State Science and Technology. 2020;9(6): 065010. https://doi.org/10.1149/2162-8777/aba729
Qiao R., Zhang H., Zhao S., Yuan L., Jia R., Peng B., Zhang Y. A state-of-art review on gallium oxide field-effect transistors. Journal of Physics D: Applied Physics. 2022;55(38): 383003. https://doi.org/10.1088/1361-6463/ac7c44
Stepanov S. I., Nikolaev V., Bougrov V. E., Romanov A. Gallium oxide: properties and applications - a review. Review. Advanced Materials Science. 2016;44: 63–86. Режим доступа: https://www.elibrary.ru/item.asp?edn=wsoxph
Pearton S. J., Aitkaliyeva A., Xian M., … Kim J. Review — radiation damage in wide and ultra-wide bandgap semiconductors. ECS Journal of Solid State Science and Technology. 2021;10: 055008. https://doi.org/10.1149/2162-8777/abfc23
Oshima Y., Ahmadi E. Progress and challenges in the development of ultra-wide bandgap semiconductor a-Ga2O3 toward realizing power device applications. Applied Physics Letters. 2022;121(26): 260501. https://doi.org/10.1063/5.0126698
Ping L. K., Berhanuddin D. D., Mondal A. K., Menon P. S., Mohamed M. A. Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications. Chinese Journal of Physics. 2021;73: 195–212. https://doi.org/10.1016/j.cjph.2021.06.015
Jiao T., Li Z., Chen W., Dong X., Li Z., Diao Z., Zhang Y., Zhang B. Stable electron concentration Sidoped b-Ga2O3 films homoepitaxial growth by MOCVD. Coatings. 2021;11: 589. https://doi.org/10.3390/coatings11050589
Kaneko K., Fujita S., Shinohe T., Tanaka K. Progress in a-Ga2O3 for practical device applications. Japanese Journal of Applied Physics. 2023;62: SF0803. https://doi.org/10.35848/1347-4065/acd125
Kan S., Takemoto S., Kaneko K., Takahashi I., Sugimoto M., Shinohe T., Fujita S. Electrical properties of a-Ir2O3/a-Ga2O3 pn heterojunction diode and band alignment of the heterostructure. Applied Physics Letters. 2018;113: 212104. https://doi.org/10.1063/1.5054054
Kaneko K., Nomura T., Fujita S. Corundumstructured a-phase Ga2O3-Cr2O3-Fe2O3 alloy system for novel functions. Physica Status Solidi C. 2010;7(10): 2467–2470. https://doi.org/10.1002/pssc.200983896
Abdullah M. M., Rajab Fahd M., Al-Abbas Saleh M. Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties. AIP Advances. 2014;4(2): 027121. https://doi.org/10.1063/1.4867012
Stepanov S., Nikolaev V., Almaev A., … Polyakov A. HVPE growth of corundum-structured a-Ga2O3 on sapphire substrates with a-Cr2O3 buffer layer. Materials Physics and Mechanics. 2021;47: 577–581. https://doi.org/10.18149/MPM.4742021_4
Yang D., Kim B., Eom T. H., Park Y., Jang H. W. Epitaxial growth of alpha gallium oxide thin films on sapphire substrates for electronic and optoelectronic devices: Progress and perspective. Electronic Materials Letters. 2022;18: 113–128. https://doi.org/10.1007/s13391-021-00333-5
Nikolaev V. I., Polyakov A. Y., Stepanov S. I., Pechnikov A. I., Guzilova L. I., Scheglov M. P., Chikiryaka A. V. Epitaxial stabilization of a-Ga2O3 layers grown on r-plane sapphire. Materials Physics and Mechanics. 2023;51(1): 1–9. https://doi.org/10.18149/MPM.5112023_1
Oda M., Kaneko K., Fujita S., Hitora T. Crackfree thick (~5 µm) a-Ga2O3 films on sapphire substrates with a-(Al,Ga)2O3 buffer layers. Japanese Journal of Applied Physics. 2016;55(12): 1202B4. https://doi.org/10.7567/JJAP.55.1202B4
Kim K.-H., Ha M.-T., Kwon Y.-J., Lee H, Jeong S.‑M., Bae S.-Y. Growth of 2-inch a-Ga2O3 epilayers via rear-flow-controlled mist chemical vapor deposition. ECS Journal of Solid State Science and Technology. 2019;8(7): Q3165. https://doi.org/10.1149/2.0301907jss
Cheng Y., Xu Y., Li Z., Zhang J., … Zhang C. Heteroepitaxial growth of a-Ga2O3 thin films on a-, c- and r-plane sapphire substrates by low-cost mist-CVD method. Journal of Alloys and Compounds. 2020;831(5): 154776. https://doi.org/10.1016/j.jallcom.2020.154776
Cha A. N., Bang S., Rho H., … Ha J. S. Effects of nanoepitaxial lateral overgrowth on growth of a-Ga2O3 by halide vapor phase epitaxy. Applied Physics Letters. 2019;115(9): 091605. https://doi.org/10.1063/1.5100246
Nikolaev V. I., Timashov R. B., Stepanov A. I., … Polyakov A. Y. Synthesis of thin single-crystalline a-Cr2O3 layers on sapphire substrates by ultrasonicassisted chemical vapor deposition. Technical Physics Letters. 2023;49(5): 81-84. http://dx.doi.org/10.21883/TPL.2023.05.56036.19549
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.