Исследование оксида галлия методом составного пьезоэлектрического осциллятора на частоте 100 кГц
Аннотация
В статье приводятся результаты исследования механических свойств и дефектной структуры оксида галлия (Ga2O3) при помощи метода составного пьезоэлектрического осциллятора. Объёмные образцы бета фазы Ga2O3 в виде монокристаллов и их сростков были получены при помощи роста из расплава с формообразователем (метод Степанова). Исследовались зависимости модуля продольной упругости и затухания упругих колебаний на частоте 100 кГц от амплитуды деформации. Изменения упругих и микропластических свойств образцов при различной температуре были сопоставлены с возможными релаксационными явлениями в структуре материала.
Изучение дефектной структуры в образцах чистого и легированного Ga2O3 необходимо для совершенствования технологии получения монокристаллов большого размера. Фундаментальными вопросами в данной области являются влияние дефектов на анизотропию электропроводности, зонную структуру и другие функциональные свойства получаемого полупроводникового материала. Цель данной статьи в установлении особенностей подготовки образцов, проведении исследований и интерпретации результатов, полученных методом составного пьезоэлектрического осциллятора для образцов оксида галлия.
В исследуемых образцах возбуждалась первая продольная мода колебаний, что соответствовало длине около 27 мм и малому поперечному сечению образца. Отдельно определялись температурные зависимости в области низких и высоких амплитуд деформаций. Для оценки кристаллического совершенства образцов, подготовленных для исследований, использовалась рентгеновская дифракция с анализом кривой качания
Скачивания
Литература
Kitsay A. A., Nosov YU. G., CHikiryaka A. V., Nikolaev V. I. Growth of b-Ga2O3 single crystals by the solution-melt method. Technical Physics Letters. 2023;49(14): 16–18. https://doi.org/10.21883/PJTF.2023.14.55819.19589
Kalygina V. M., Nikolaev V. I., Almaev A. V., Tsymbalov A. V., Petrova Y. S., Pechnikov I. A., Butenko P. N. Properties of resistive structures based on gallium oxide polymorphic phases. Technical Physics Letters. 2020;46: 867–870. https://doi.org/10.1134/S1063785020090060
Green A. J., Speck J., Xing G., … Higashiwaki M. b-gallium oxide power electronics. Apl Materials. 2022;10(2): 029201. https://doi.org/10.1063/5.0060327
Kalygina V. M., Lygdenova T. Z., Petrova Y. S., Chernikov E. V. Influence of the substrate material on the properties of gallium-oxide films and galliumoxide- based structures. Semiconductors. 2019;53(4): 452–457. https://doi.org/10.1134/S1063782619040122
Kaur D., Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: recent progress and future prospects. Advanced Optical Materials. 2021;9(9): 2002160. https://doi.org/10.1002/adom.202002160
Kalygina V. M., Kiselyeva O. S., Kushnarev B. O., Oleinik V. L., Petrova Y. S., Tsymbalov A. V. Selfpowered photo diodes based on Ga2O3/n-GaAs structures. Semiconductors. 2022;56(9): 707–711. https://doi.org/10.21883/SC.2022.09.54139.9868
Lu X., Zhou L., Chen L., Ouyang X., Liu B., Xu J., Tang H. Schottky X-ray detectors based on a bulk b-Ga2O3 substrate. Applied Physics Letters. 2018;112(10): 103502 https://doi.org/10.1063/1.5020178
Zhu J., Xu Z., Ha S., Li D., Zhang K., Zhang H., Feng J. Gallium oxide for gas sensor applications: A comprehensive review. Materials. 2022:15(20): 7339. https://doi.org/10.3390/ma15207339
Nikolaev V. I., Almaev A. V., Kushnarev B. O., … Chernikov E. V. Gas-sensing properties of In2O3-Ga2O3 alloy films. Technical Physics Letters. 2022;48(7): 76–79. https://doi.org/10.21883/TPL.2022.07.54046.19211
Petrenko A. A., Kovach Ya. N., Bauman D. A., Odnoblyudov M. A., Bougrov V. E., Romanov A. E. Current state of Ga2O3-based electronic and optoelectronic devices. Brief review. Reviews on Advanced Materials and Technologies. 2021;3(2): 1–26. https://doi.org/10.17586/2687-0568-2021-3-2-1-26
Bauman D. A., Panov D. Iu., Spiridonov V. A… Romanov A. E. High quality b-Ga2O3 bulk crystals, grown by edge-defined film-fed growth method: growth features, structural and thermal properties. Journal of Vacuum Science and Technology A. 2023;41: 053203. https://doi.org/10.1116/6.0002644
Bauman D. A., Panov D. I., Spiridonov V. A., Kremleva A. V., Romanov A. E. On the successful growth of bulk gallium oxide crystals by the EFG (Stepanov) method. Functional Materials Letters. 2023: 2340026. https://doi.org/10.1142/S179360472340026X
Son N. T., Goto K., Nomura K., … Janzén E. Electronic properties of the residual donor in unintentionally doped b-Ga2O3. Journal of Applied Physics. 2016;120(23): 235703. https://doi.org/10.1063/1.4972040
Ivanova E. V., Dementev P. A., Zamoryanskaya M. V., … Bougrov V. E. Study of charge carrier traps in bulk crystal gallium oxide b-Ga2O3. Physics of the Solid State. 2021;63(4): 544–549. https://doi.org/10.1134/S1063783421040089
Wang Z., Chen X., Ren F. F., Gu S., Ye J. Deeplevel defects in gallium oxide. Journal of Physics D: Applied Physics. 2020;54(4): 043002. https://doi.org/10.1088/1361-6463/abbeb1
Manikanthababu N., Sheoran H., Siddham P., Singh R. Review of radiation-induced effects on b-Ga2O3 aterials and devices. Crystals. 2022;12(7): 1009. https://doi.org/10.3390/cryst12071009
Seyidov P., Ramsteiner M., Galazka Z., Irmscher K. Resonant electronic Raman scattering from Ir4+ ions in b-Ga2O3. Journal of Applied Physics. 2022;131(3): 035707. https://doi.org/10.1063/5.0080248
Abdrakhmanov V. L., Zav’yalov D. V., Konchenkov V. I., Kryuchkov S. V. Effect of a strong electromagnetic wave on the conductivity of b-Ga2O3. Bulletin of the Russian Academy of Sciences: Physics. 2020;84(1): 53-57. https://doi.org/10.3103/S1062873820010037
Guzilova L. I., Grashchenko A. S., Pechnikov A. I., … Nikolaev V. I. Materials Physics and Mechanics. 2016;29(2): 166–171. (In Russ., abstract in Eng.). Available at: https://www.ipme.ru/e-journals/MPM/no_22916/MPM229_09_guzilova.pdf
Quimby S. L. On the experimental determination of the viscosity of vibrating solids. Physical Review. 1925; 25(4): 558. https://doi.org/10.1103/PhysRev.25.558
Kimball A. L., Lovell D. E. Internal friction in solids. Physical Review. 1927;30(6): 948. https://doi.org/10.1103/PhysRev.30.948
Marx J. Use of the piezoelectric gauge for internal friction measurements. Review of Scientific Instruments. 1951;22(7): 503–509. https://doi.org/10.1063/1.1745981
Naimi E. K. Internal-friction anisotropy in a real crystal and construction of characteristic internalfriction surfaces. Soviet Physics Journal. 1975;18: 371–375. https://doi.org/10.1007/BF00889303
Granato A. V., Lücke K. Application of dislocation theory to internal friction phenomena at high frequencies. Journal of Applied Physics. 1956;27(7): 789–805. https://doi.org/10.1063/1.1722485
Robinson W. H., Edgar A. The piezoelectric method of determining mechanical damping at frequencies of 30 to 200 KHz. IEEE Transactions on Sonics and Ultrasonics. 1974;21(2): 98–105. https://doi.org/10.1109/T-SU.1974.29798
Tyapunina N. A., Zinenkova G. M., Shtrom E. V. Dislocation multiplication in alkali halide crystals exposed to ultrasonic waves. The original stage. Physica Status Solidi (a). 1978;46(1): 327–336. https://doi.org/10.1002/pssa.2210460143
Nikolaev V. I., Stepanov S. I., Romanov A. E., Bougrov V. E. Gallium oxide. In: Single Crystals of Electronic Materials. R. Fornari (ed.). Woodhead Publishing; 2019. 487–521. https://doi.org/10.1016/B978-0-08-102096-8.00014-8
Yamaguchi H., Kuramata A., Masui T. Slip system analysis and X-ray topographic study on b-Ga2O3. Superlattices and Microstructures. 2016;99: 99–103. https://doi.org/10.1016/j.spmi.2016.04.030
Wu Y., Rao Q., Best J. P., Mu D., Xu X., Huang H. Superior room temperature compressive plasticity of submicron beta-phase gallium oxide single crystals. Advanced Functional Materials. 2022;32(48): 2207960. https://doi.org/10.1002/adfm.202207960
Kaminskii V. V., Kalganov D. A., Podlesnov E., Romanov A. E. Influence of dislocation and twin structures on the mechanical characteristics of Ni- Mn-Ga alloys at ultrasonic frequencies. Frontier Materials and Technologies. 2022;2: 28–36. https://doi.org/10.18323/2782-4039-2022-2-28-36
Kaminskii V. V., Lyubimova Y. V., Romanov A. E. Probing of polycrystalline magnesium at ultrasonic frequencies by mechanical spectroscopy. Materials Physics and Mechanicals. 2020;44(1): 19–25. https://doi.org/10.18720/MPM.4412020_3
Guzilova L. I., Kardashev B. K., Pechnikov A. I., Nikolaev V. I. Elasticity and Inelasticity of bulk GaN crystals. Technical Physics. 2020;90(1): 138–142. https://doi.org/10.1134/s1063784220010089
Sapozhnikov K. V., Golyandin S. N., Kustov S. B. Amplitude dependence of the internal friction and young’s modulus defect of polycrystalline indium. Physics of the Solid State. 2010;52(1): 43–48. https://doi.org/10.1134/S1063783410010087
Lebedev A. B., Kustov S. V., Kardashov B. K. On internal friction and the Young’s modulus defect in the crystal deformation process*. Solid State Physics. 1992;34(9): 2915. (In Russ.). Available at: https://journals.ioffe.ru/articles/viewPDF/22631
Zheng X. Q., Lee J., Rafique S., Han L., Zorman C. A. Zhao H., Feng P. X. L. Ultrawide band gap b-Ga2O3 nanomechanical resonators with spatiallyvisualized multimode motion. ACS Applied Materials and Interfaces 2017;9(49): 43090–43097. https://doi.org/10.1021/acsami.7b13930
Zheng X. Q., Zhao H., Feng P. X. L. A perspective on b-Ga2O3 micro/nanoelectromechanical systems. Applied Physics Letters. 2022;120(4). https://doi.org/10.1063/5.0073005
Golovin I. S. Internal friction and mechanical spectroscopy of metals and alloys. Metal Science and Heat Treatment. 2012;54(5-6): 207–208. https://doi.org/10.1007/s11041-012-9482-7
Zakgeim D. A., Panov D. I., Spiridonov V. A., … Bougrov V. E. Volume gallium oxide crystals grown from melt by the Czochralski method in an oxygen-containing atmosphere. Technical Physics Letters. 2020;46: 1144–1146. https://doi.org/10.1134/S1063785020110292
Samoylov A. M., Kopytin S. S., Oreshkin K. V., Shevchenko E. A. Synthesis of chemically pure b-phase powders of gallium(III) oxide. Condensed Matter and Interphases. 2022;24(3): 345–355. https://doi.org/10.17308/kcmf.2022.24/9857
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.