Современные научные и практические решения в технологии изготовления подложек полупроводниковых соединений А3В5. Обзор
Аннотация
Сегодня в электронном и оптическом приборостроении в качестве подложек для эпитаксиального роста широко используются монокристаллические полупроводниковые материалы А3В5 – GaAs, GaSb, InAs, InSb, InP. Данные материалы получают в виде массивных монокристаллических слитков. В связи с этим именно для них разрабатываются технологии изготовления и обработки пластин, используемых в качестве подложек для операций эпитаксиального роста. Миниатюризация современных систем и приборов обуславливает высокие требования к качеству поверхности этих подложек. Одним из основных критериев является низкая шероховатость (Ra) поверхности порядка 0.5 нм. Достижение таких значений требует усовершенствования методов обработки поверхности.
В статье проанализированы современные подходы к обработке поверхности полупроводниковых пластин моно-кристаллических материалов А3В5. Рассмотрены особенности шлифовки полупроводниковых пластин как этапа, предшествующего полировке. Проведен анализ методов полировки и установлено, что наибольшее развитие и распространение сегодня имеет химико-механическая полировка пластин А3В5, для которой рассмотрены основные параметры и систематизированы теоретические подходы. Выявлены ключевые тенденции развития технологии
химико-механической обработки полупроводниковых пластин А3В5 для получения пластин высокого качества. Приведены и проанализированы современные исследования различных методик химической полировки, как возможного аналога химико-механической обработки поверхности. Также рассмотрены методики пассивации поверхности после получения пластин с низкой шероховатостью. Пассивацию проводят для снижения реакционной способности поверхности и стабилизации электронных состояний в приповерхностных слоях пластины.
Предложено классифицировать подходы к пассивации на основе получаемого химического состава поверхности, когда пассивирующие слои создают при помощи окисления, сульфидирования, нитрирования. Также предложена классификация по способам создания пассивирующих покрытий с выделением химических методов при обработке поверхности в растворах и физико-химических методов
Скачивания
Литература
Voronenkov V. V., Bochkareva N. I., Virko M. V., … Shreter Yu. G. Gallium nitride substrates state of the art, problems and possibilities. Nanoindustriya. 2017;S(74): 478–483. Available at: https://www.elibrary.ru/item.asp?id=29871698
Kormilitsina S. S., Molodtsova E. V., Knyzev S. N., Kozlov R. Yu., Zavrazhin D. A., Zharikova E. V., Syrov Yu. V. Study of the influence of treatment on the strength of undoped indium antimonide single-crystal plates. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(1): 48–56. (In Russ.). https://doi.org/10.17073/1609-3577-2021-1-48-56
Allwood D. A., Cox S., Mason N. J., Palmer R., Young R., Walke P. J. Monitoring epiready semiconductor wafers. Thin Solid Films. 2002;412(1-2): 76–83. https://doi.org/10.1016/S0040-6090(02)00316-4
Kiselev M. G., Drozdov A. V., YAmnaya D. A. Technology of mechanical sawing of fragile non-metallic materials with forced vibrations of the workpiece*. Minsk: BNTU Publ.; 2017. Available at: https://rep.bntu.by/bitstream/handle/data/37305/Tekhnologiya_mekhanicheskogo_raspilivaniya_hruphih_nemetallicheskih_materialov.pdf?sequence=5&isAllowed=y&ysclid=lhkrlgps56194871673
Cetyrkina S. A., Zujkov I. F., Chumakova I. V., Chumakova A. V. Technology for cutting monocrystalline silicon rods. Current problems of aviation and astronautics*. 2010;1(6): 25–26. (In Russ.). Available at: https://elibrary.ru item.asp?ysclid=lhkt9qaobe438551147&id=22634031
Pei Z., Billingsley S., Miura S. Grinding induced subsurface cracks in silicon wafers. International Journal of Machine Tools and Manufacture. 1999;39(7): 1103–1116. https://doi.org/10.1016/S0890-6955(98)00079-0
Meng Q., Zhang X., Lu Y., Si J. Calculation and verification of thermal stress in InSb focal plane arrays detector. Optical and Quantum Electronics. 2017;49(402) https://doi.org/10.1007/s11082-017-1243-9
Zhang X., Meng Q., Zhang L., Lv Y. Modeling and deformation analyzing of InSb focal plane arrays detector under thermal shock. Infrared Physics & Technology. 2014;63: 28–34. https://doi.org/10.1016/j.infrared.2013.12.004
Ponomarev V. B., Loshkarev A. B. Equipment for electronic materials plants. Methodology guideline. Lecture course*. Ekaterinburg: GOU-VPO UGTU-UPI Publ.; 2008. 87 p. (In Russ.). Availabke at: file:///C:/Users/Lab351/Downloads/Ponomarev_Loshkarev.pdf
Technology of integral electronics*. Ed.: A. P. Dostanko, L. I. Gurskogo. Minsk: Integralpoligraf Publ.; 2009. 571 p. (In Russ.)
Lapping and finishing machine elements*. Eds.: S. G. Babaeva, P. G. Sadygova. M.: Mashinostroenie Publ.; 1976. 128 s. (In Russ.)
Marinescu I. D., Rowe W. B., Dimitrov B., Ohmori H. Loose abrasive processes. In book: Tribology of Abrasive Machining Processes. Second Edition. Oxford: William Andrew Publishing; 2013. 399–421. https://doi.org/10.1016/b978-1-4377-3467-6.00013-6
Teplova T. B. Quasi-plastic removal of the surface layer of hard brittle materials to obtain a nanometer surface relief*. Scientific Newsletter. 2010;8: 73–88. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=15278524
Gorokhov V., Zakharevich E., Shavva M. Cutting in the quasiplastic mode. Technology equipment and technologies. Photonics Russia. 2015;49(1): 36–43. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=23107041
Doi T., Marinescu I. D., Kurokawa S. The current situation in ultra-precision technology – silicon single crystals as an example. In book: Advances in CMP Polishing Technologies. USA: William Andrew Publishing; 2012. 15–111p. https://doi.org/10.1016/b978-1-4377-7859-5.00003-x
Deaconescu A., Deaconescu T. Experimental and statistical parametric optimisation of surface roughness and machining productivity by lapping. Transactions of famena XXXIX-4. 2015;39: 65–78. Available at: https://hrcak.srce.hr/152134
Mirofyanchenko E. V., Mirofyanchenko A. E., Popov V. S. The influence of back thinning technique of the InSb (100) FPA on its geometric characteristics and crystal structure. Applied Physics (Prikladnaya Fizika). 2020;2: 46-52. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar y.ru/item.asp?edn=rmmbya
Prakash S. J., Tyagi R., Gupta A. Backside thinning of GaAs wafer by lapping using DOE approach. In: India International Conference on Power Electronics: Materials of international conference IICPE2010, 2010, India: New Delhi; 2011. p. 1–4. https://doi.org/10.1109/IICPE.2011.5728072
URL: https://www.fujimico.com/catalog/Lapping/5
Vizer L. N. Technology of elements and structures of microelectronics. Stavropol: North- Caucasus Federal University Publ.; 2017.
Lee H., Wang H., Park J., Jeong H. Experimental investigation of process parameters for roll-type linear chemical mechanical polishing (Roll-CMP) system. Precision Engineering. 2014;38: 928–934. https://doi.org/10.1016/j.precisioneng.2014.06.003
Brightup S. J., Goorsky M. S. Chemicalmechanical polishing for III-V wafer bonding applications: polishing, roughness, and an abrasivefree polishing model. ECS Transactions. 2010;33(4): 383–389. https://doi.org/10.1149/1.3483528
Deng Q., Kong T., Li G., Yuan J. Study on polishing technology of GaAs wafer. Advanced Materials Research. 2012;497: 200–204. https://doi.org/10.4028/www.scientific.net/AMR.497.200
Yi D., Li J., Cao J. Study on fundamental polishing characteristics in chemical mechanical polishing of gallium arsenide (GaAs) wafer. Bulgarian Chemical Communications. 2017;49(Special Issue-K1): 113–117. Режим доступа: http://bcc.bas.bg/BCC_Volumes/Volume_49_Special_K_2017/BCC-49-SI-K1-2017.pdf#page=111
祐二 森澤, 直紀 高山, NIPPON EKUSHIIDO KK. Polishing liquid for compound semiconductor and method for polishing compound semiconductor using the same. Patent No. JP2585963B2, No. JP5341276A; Application 10.12.1993; Publ. 26.02.1997.
Lyu B. H., Dai W. T., Weng H. Z., Li M., Deng Q. F., Yuan J. L. Influence of components on the rheological property of shear thickening polishing slurry. Advanced Materials Research. 2016;1136: 461–465. https://doi.org/10.4028/www.scientific.net/amr.1136.461
Lortz W., Menzel F., Brandes R., Klaessig F., Knothe T., Shibasaki T. News from the M in CMP– Viscosity of CMP slurries, a constant? MRS Proceedings. 2003;767(17): 767. https://doi.org/10.1557/PROC-767-F1.7
Peddeti Sh., Ong P., L. Leunissen H. A., Babu S. V. Chemical mechanical polishing of Ge using colloidal silica particles and H2O2. Electrochemical and Solid-State Letters. 2011;14(7): 254–257. https://doi.org/10.1149/1.3575166
Zhao D., Lu X. Chemical mechanical polishing: Theory and experiment. Friction. 2013;1(12): 306–326. https://doi.org/10.1007/s40544-013-0035-x
Gao J., Zhou H., Du J., … Qian L. Effect of counter-surface chemical activity on mechanochemical removal of GaAs surface. Tribology International. 2022;176: 107928. doi.org/10.1016/j.triboint.2022.107928
Cheng J., Huang S., Li Y., Wang T., Xie L., Lu X. RE (La, Nd and Yb) doped CeO2 abrasive particles for chemical mechanical polishing of dielectric materials: Experimental and computational analysis. Applied Surface Science.2020;506: 144668. https://doi.org/10.1016/j.apsusc.2019.144668
Seo J., Gowda A., Khajornrungruang P., Hamada S., Song T., Babu S. Trajectories, diffusion, and interactions of single ceria particles on a glass surface observed by evanescent wave microscopy. Journal of Materials Research. 2020;35: 321–331. https://doi.org/10.1557/jmr.2020.6
Gowda A., Seo J., Ranaweera C. K., Babu S. Cleaning solutions for removal of ~30 nm ceria particles from proline and citric acid containing slurries deposited on silicon dioxide and silicon nitride surfaces. ECS Journal of Solid State Science and Technology. 2020; 9: 044013. https://doi.org/10.1149/2162-8777/ab8ffa
Kiseleva L. V., Lopukhin A. A., Mezin Yu. S., Savostin A. V., Vlasov P. V., Vyatkina O. S. Influence of conditions of the InSb monocrystals chemical processing on a surface composition and structure*. Applied Physics (Prikladnaya Fizika). 2015;5: 84–89. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=24839899
Linehan D.M. Chemical Mechanical Polishing of InSb. Master’s thesis in nanoscience. Lund University: 2021. 39 p. URL: https://lup.lub.lu.se/student-papers/search/publication/9069263
Bhonsle R. K., Teugels L., Ibrahim S. A. U., … Leunissen L. H. A. Inspection, characterization and classification of defects for improved CMP of III-V materials. ECS Journal of Solid State Science and Technology. 2015;4(11): 5073–5077. https://doi.org/10.1149/2.0111511jss
Lee H. Semi-empirical material removal model with modified real contact area for CMP. International Journal of Precision Engineering and Manufacturing. 2019;20: 1325 – 1332. https://doi.org/10.1007/s12541-019-00161-6
Chen C.-C., Li J.-C., Liao W.-C., Ciou Y.-J., Chen C.-C. Dynamic pad surface metrology monitoring by swingarm chromatic confocal system. Applied Sciences. 2021;11(1): 179. https://doi.org/10.3390/app11010179
Lee B. Modeling of chemical mechanical polishing for shallow trench isolation. PhD Dissertation. USA: MIT, 2002. 201 p. Available at: https://core.ac.uk/download/pdf/4397042.pdf
Terayama Y., Khajornrungruang P., Suzuki K., Kusatsu K., Hamada S., Wada Y., Hiyama H. Real time nanoscale leaning phenomenon observation during PVA brush scrubbing by evanescent field. ECS Trans. 2019;92(2): 191–197. https://doi.org/10.1149/09202.0191ecst
Khanna A. J., Jawali P., Redfeld D., … Bajaj R. Methodology for pad conditioning sweep optimization for advanced nodes. Microelectronic Engineering. 2019;216(15): 111101. https://doi.org/10.1016/j.mee.2019.111101
Goldstein R. V., Osipenko M. N. Chemical –mechanical polishing. Part 2. Model of local interactions. Perm State Technical University Mechanics Bulletin. 2011;3: 26–42. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar y.ru/item.asp?id=16898671
Khanna A. J., Gupta S., Kumar P., Chang F.-C., Singh R. K. Quantification of shear induced agglomeration in chemical mechanical polishing slurries under different chemical environments. Microelectronic Engineering. 2019;210: 1–7. https://doi.org/10.1016/j.mee.2019.03.012
Han R., Sampurno Y., Theng S., Sudargho F., Zhuang Y., Philipossian A. Application of the Stribeck+ curve in silicon dioxide chemical mechanical planarization. ECS Journal of Solid State Science and Technology. 2017; 6: 161–164. https://doi.org/10.1149/2.0241704jss
Liao X., Sampurno Y., Zhuang Y., Philipossian A. Effect of slurry application/injection schemes on slurryavailability during chemical mechanical planarization(CMP). Electrochemical and Solid-State Letters. 2012; 15(4): H118–H122. https://doi.org/10.1149/2.009205esl
Lee J.-T., Lee E.-S., Won J.-K., Choi H.-Z. Wafer polishing process with signal analysis and monitoring for optimum condition of machining. Advanced Materials Research. 2010;126-128: 295–304. https://doi.org/10.4028/www.scientific.net/AMR.126-128.295
Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. USA: National Association of Corrosion Engineers, 2nd edition; 1974. 645 p.
Lo R., Lo S-L. A pilot plant study using ceramic membrane microfiltration, carbon adsorption and reverse osmosis to treat CMP (chemical mechanical polishing) wastewater. Water Supply. 2004;4(1): 111–118. https://doi.org/10.2166/ws.2004.0013
Sioncke S., Brunco D. P., Meuris M., … Heyns M. M. Etch rates of Ge, GaAs and InGaAs in acids, bases and peroxide based mixtures. ECS Transactions. 2008:16(10): 451–460. https://doi.org/10.1149/1.2986802
Frank-Rotsch Ch., Dropka N., Rotsc P. III Arsenide. In Book: Single crystals of Electronic Materials: Growth and Properties. UK: Woodhead Publishing, Elsevier; 2018. pp. 181–240. https://doi.org/10.1016/B978-0-08-102096-8.00006-9
Ong Р., Teugel L. CMP processing of high mobility channel materials: alternatives to Si. In book: Advances in Chemical Mechanical Planarization (CMP), 2nd Edition. UK: Woodhead Publishing, Elsevier; 2022. pp. 125–142. https://doi.org/10.1016/B978-0-12-821791-7.00020-4
Qin K., Moudgil B., Park C. W. A chemical mechanical polishing model incorporating both the chemical and mechanical effects. Thin Solid Films. 004;446(2): 277–286. https://doi.org/10.1016/j.tsf.2003.09.060
Lee H. S., Jeong H. D, Dornfeld D. A. Semiempirical material removal rate distribution model for SiO2 chemical mechanical polishing (CMP) processes. Precision Engineering. 2013;37: 483–490. https://doi.org/10.1016/j.precisioneng.2012.12.006
Seo J. A review on chemical and mechanical phenomena at the wafer interface during chemical mechanical planarization. Journal of Materials Research. 2021;36(1): 235–257. https://doi.org/10.1557/s43578-020-00060-x
Park B., Kim Y., Kim H., Jeong H., Dornfeld D. A. Effect of ceria abrasives on planarization efficiency in STI CMP Process. ECS Transactions. 2009;19(7): 51–59.https://doi.org/10.1149/1.3123774
Amirhanov A. V., Gladkih A. A., Makarchuk V. V., Pshennikov A. G., Shahnov V. A. Polynomial model of chemical-mechanical planarization in production of sub-micrometer VLSIC. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2012;2: 20–36. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=17734975
Goldstein R. V., Osipenko M. N. Chemical – mechanical polishing. Part 1. Main characteristics: review. Perm State Technical University Mechanics Bulletin. Vestnik PGTU. Mekhanika. 2011;3: 26–42. (In Russ., abstract in Eng.). Available at:: https://www.elibrary.ru/item.asp?id=16898670
Runnels S. R. Feature-scale fluid-based erosion modeling for Chemical-Mechanical Polishing. Journal of Electrochemical Society. 1994;141(7): 1900–1904. https://doi.org/10.1149/1.2055024
Luo J., Dornfeld D. A. Material removal mechanism in chemical mechanical polishing: theory and modelling. IEEE Transactions on Semiconductor Manufacturing. 2001;14(2): 112–133. https://doi.org/10.1109/66.920723
Lee H., Lee D., Jeong H. Mechanical aspects of the chemical mechanical polishing process: a review. International Journal of Precision Engineering and Manufacturing. 2016;17(4): 525–536. https://doi.org/10.1007/s12541-016-0066-0
Papis Polakowska E., Leonhardt E., Kaniewski J. Characterization of (100) GaSb passivated surface using next generation 3D digital microscopy. Acta Physica Polonica Series a. 2014;125(4): 1052–1055. https://doi.org/10.12693/APhysPolA.125.1052
Yan B., Liang H., Liu Y., … Huang L .Chemical mechanical polishing of GaSb wafers for significantly improved surface quality. Frontiers in Materials. 2021;8: 773131. https://doi.org/10.3389/fmats.2021.773131
Hayashi S., Joshi M. B., Goorsky M. S. Chemical mechanical polishing of exfoliated III-V layers. ECS Transactions. 2008;16(8): 295–302. https://doi.org/10.1149/1.2982881
Seo D., Na J., Lee S., Lim S. Behavior of GaSb (100) and InSb (100) surfaces in the presence of H2O2 in acidic and basic cleaning solutions. Applied Surface Science. 2017;399: 523–534. https://doi.org/10.1016/j.apsusc.2016.12.114
Matovu J. B., Ong P., Leunissen L. H. A., Krishnan S., Babua S. V. Fundamental investigation of chemical mechanical polishing of GaAs in silica dispersions: material removal and arsenic trihydride formation pathways. ECS Journal of Solid State Science and Technology. 2013;2(11): 432−439. https://doi.org/10.1149/2.008311jss
Peddeti Sh., Ong P., Leunissen L. H. A., Babu S. V. Chemical mechanical polishing of InP. ECS Journal of Solid State Science and Technology. 2012;1(4): 184–189. https://10.1149/2.016204jss
Suryadevara B. Advances in chemical mechanical planarization (CMP). 2nd edition. The UK, Cambridge: Woodhead Publishing; 2021. 648 p.
Lee H., Dornfeld D. A., Jeong H. Mathematical model-basedev aluationmet hodology for environmental burden of chemical mechanical planarization process. International Journal of Precision Engineering and Manufacturing-Green Technology. 2014;1(1): 11–15. https://doi.org/10.1007/s40684-014-0002-7
Andreev V. M., Kudryashov D. A., Mizerov M. N., Pushnyj B. V. Method for semiconductor polish. Patent No RU 245754, H01L21/302, B82B3/00; No 2011106341/28; Appl. 18.02.2011; Publ. 27.07.2012,
bull. No 21. Available at: https://patents.s3.yandex. net/RU2457574C1_20120727.pdf
Joshida M., Ashidzava T., Terasaki H., Kurata Ya., Macudzava D., Tanno K., Ootuki Yu., Cerium oxide composite and wafer polish method. Patent No RU2178599C2, H01L 21/304; No 99109040/28; Appl. 30.09.1997; Publ. 20.01.2002, bull. No 2. Available at: https://pubchem.ncbi.nlm.nih.gov/patent/RU-2178599-C2
Lee H., Jeong H. Analysis of removal mechanism on oxide CMP using mixed abrasive slurry. International Journal of Precision Engineering and Manufacturing. 2015;16(3): 603 – 607. https://doi.org/10.1007/s12541-015-0081-6
Lee H., Lee D., Kim M., Jeong H. Effect of mixing ratio of non-spherical particles in colloidal silica slurry on oxide CMP. International Journal of Precision Engineering and Manufacturing. 2017;18(10): 1333–1338. https://doi.org/10.1007/s12541-017-0158-5
Lee H. S., Jeong H. D. Chemical and mechanical balance in polishing of electronic materials for defectfree surfaces. CIRP Annals. 2009;58(1): 485–490. https://doi.org/10.1016/j.cirp.2009.03.115
Lee H. Tribology research trends in chemical mechanical polishing (CMP) process. Tribology and Lubricants. 2018;34(3): 115–122. https://doi.org/10.9725/KTS.2018.34.3.115
Suzuki N., Hashimoto Y., Yasuda H., Yamaki S., Mochizuki Y. Prediction of polishing pressure distribution in CMP process with airbag type wafer carrier. CIRP annals. 2017;66(1): 329–332. https://doi.org/10.1016/j.cirp.2017.04.088
Park J.-Y., Han J.-H., Kim C. A study on the influence of the cross-sectional shape of the metalinserted retainer ring and the pressure distribution from the multi-zone carrier head to increase the wafer yield. Applied Sciences. 2020;10(23): 8362. https://doi.org/10.3390/app10238362
Martinez B., Flint J. P., Dallas G., … Furlong M. J. Standardizing large format 5” GaSb and InSb substrate production. Proceedings Volume 10177, Infrared Technology and Applications XLIII. 2017; 10177. https://doi.org/10.1117/12.2263961
Pandey Kh., Pandey P. M. Chemically assisted polishing of monocrystalline silicon wafer Si (100) by DDMAF. Procedia Engineering. 2017;184: 178−184. https://doi.org/10.1016/j.proeng.2017.04.083
Kum Ch. W., Sato T., Guo J., Liud K., Butler D. A novel media properties-based material removal rate model for magnetic field-assisted finishing. International journal of mechanical sciences. 2018;141: 189–197. https://doi.org/10.1016/j.ijmecsci.2018.04.006
Zhang J., Wang H., Kumar S., Jin M. Experimental and theoretical study of internal finishing by a novel magnetic driven polishing tool. International Journal of Machine Tools and Manufacture. 2020;153: 103552. https://doi.org/10.1016/j.ijmachtools.2020.103552
Lu W. Z., Zuo D. W., Sun Y. L., Zhao Y. F., Xu F., Chen R. F. Temperature field during CMP GaAs wafer using an AID. Key Engineering Materials. 2009;416: 28−33. https://doi.org/10.4028/www.scientific.net/KEM.416.28
Hong S. H., Isii H., Touge M., Watanabe J. Investigation of chemical mechanical polishing of GaAs wafer by the effect of a photocatalyst. Key Engineering Materials. 2005;291-292: 381−384. https://doi.org/10.4028/www.scientific.net/KEM.291-292.381
Ma G., Li S., Liu X., Yin X., Jia Z., Liu F. Combination of plasma electrolytic processing and mechanical polishing for single-crystal 4H-SiC. Micromachines. 2021;12: 606−618. https://doi.org/10.3390/mi12060606
Ou L., Dong Zh., Kang R., Shi K., Guo D. Photoelectrochemically combined mechanical polishing of n-type gallium nitride wafer by using metal nanoparticles as photocathodes. The International Journal of Advanced Manufacturing Technology. 2019;105: 4483−4489. https://doi.org/10.1007/s00170-018-03279-5
Jo H., Lee D. S., Jeong S. H., Lee H. S., Jeong H. D. Hybrid CMP slurry supply system using ionization and atomization. Applied Sciences. 2021;11: 2217−2233. https://doi.org/10.3390/app11052217
Papis Polakowska E. Surface treatments of GaSb and related materials for the processing of midinfrared semiconductor devices. Electron Technology −Internet Journal. 2006;37/38(4): 1−34. Режим доступа: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BWA0-0014-0022
Eminov Sh. O., Jalilova Kh. D., Mamedova E. A. Wet chemical etching of the (111)In and Sb planes of InSb substrates. Inorganic Materials. 2011;47(4): 340–344. https://doi.org/10.1134/S0020168511040091
Aureau D., Chaghi R., Gerard I., Sik H., Fleury J., Etcheberry A. Wet etching of InSb surfaces in aqueous solutions: Controlled oxide formation. Applied Surface Science. 2013;276: 182−189. https://doi.org/10.1016/j.apsusc.2013.03.063
Tomashik Z. F., Kusyak N. V., Tomashik V. N. Chemical etching of InAs, InSb, and GaAs in H2O2–HBr solutions. Inorganic Materials. 2002;38(5): 434−437. https://doi.org/10.1023/A:1015402501421
Han L., Xu H., Sartin M. M., … Tian Zh.-Q. Pulse potential confined electrochemical polishing on gallium arsenide wafer. Journal of The Electrochemical Society. 2021;168: 043507. https://doi.org/10.1149/1945-7111/abf96f
Zhang Y., Chen H., Liu D., Deng H. High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching. Applied Surface Science. 2020;525: 146532. https://doi.org/10.1016/j.apsusc.2020. 146532
Braun A. K., Ptak A. J. Planarization of rough (100) GaAs substrates via growth by hydride vapor phase epitaxy. IEEE 48th Photovoltaic Specialists Conference (PVSC): Conference Record, 2021, Fort Lauderdale, FL, USA; 2021. pp. 1437−1439. https://doi. org/10.1109/PVSC43889.2021.9518828
Lvova T. V., Dunaevskii M. S., Lebedev M. V., Shakhmin A. L., Sedova I. V., Ivanov S. V. Chemical passivation of InSb (100) substrates in aqueous solutions of sodium sulfide. Semiconductors. 2013;47(5): 721–727. https://doi.org/10.1134/s106378261305014x
Kul’chickij N. A., Naumov A. V., Starcev V. V. Photonic is a new driver of gallium arsenide market. Photonics Russia. 2020;14(2): 138–149. https://doi.org/10.22184/1993-7296.FRos.2020.14.2.138.149
Holloway G. W., Haapamaki Ch. M., Kuyanov P., LaPierre R. R., Baugh J. Electrical characterization of chemical and dielectric passivation of InAs nanowires. Semiconductor Science and Technology. 2016;31(11): 114004. https://doi.org/10.1088/0268-1242/31/11/114004
Zou X., Li Ch., Su X., … Yartsev A. Carrier recombination processes in GaAs wafer passivated by wet nitridation. ACS Applied Materials and Interfaces. 2020;12(25): 28360−29367. https://doi.org/10.1021/acsami.0c04892
Tereshchenko O. E., Chikichev S. I., Terekhov A. S. Atomic structure and electronic properties of HCl–isopropanol treated and vacuum annealed GaAs 100 surface. Applied Surface Science. 1999;142: 75–80. https://doi.org/10.1016/S0169-4332(98)00634-5
Haworth L., Lu J., Westwood D. I., MacDonald J. E. Atomic hydrogen cleaning, nitriding and annealing InSb (100). Applied Surface Science. 2000;166: 253–258. https://doi.org/10.1016/S0169-4332(00)00425-6
Mittova I., Sladkopevtsev B., Dontsov A., Syrov Yu., Kovaleva A., Tarasova O. Thermal oxidation of a single-crystal GaAs surface treated in sulfur vapor. Inorganic Materials. 2021;57(7); 663–668. https://doi.org/10.1134/s002016852107013x
Syrov Y. V. Indium antimonide interaction with tellurium vapors*. Physical-chemical processes in condensed matter and interfaces: theses of VII Russian conference, 10-13 November 2015, Voronezh. Voronezh: Izdatel’sko-poligraficheskij centr “Nauchnaya kniga”; 2015. pp. 292–293. (In Russ.)
Hasegawa H., Hartnagel H. L. Anodic oxidation of GaAs in mixed solutions of glycol and water. Journal of The Electrochemical Society. 1976;123(5): 713–723. https://doi.org/10.1149/1.2132915
Jewett S. A., Ivanisevic A. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity. Accounts of Chemical Research. 2012;45(9): 1451–1459. https://doi.org/10.1021/ar200282f
Sun M. H., Joyce H. J., Gao Q., Tan H. H., Jagadish C., Ning C. Z. Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation. Nano Letters. 2012;12(7): 3378−3384. https://doi.org/10.1021/nl300015w
Solov’ev V. A., Sedova I. V., Lvova T. V., … Ivanov S. V. Effect of sulfur passivation of InSb (0 0 1) substrates on molecular-beam homoepitaxy. Applied Surface Science. 2015;356: 378–382. https://doi.org/10.1016/j.apsusc.2015.07.200
Zhernokletov D. M., Dong H., Brennan B., Kim J., Wallace R. M. Optimization of the ammonium sulfide (NH4)2S passivation process on InSb(111)A. Journal of Vacuum Science & Technology B. 2012;30(4): 04E103. https://doi.org/10.1116/1.4719961
Mirofyanchenko A. E., Mirofianchenko E. V., Lavrentyev N. A., Popov V. S. Anodic passivation of InSb (100) by sodium sulfide solution with additional sulfidation pretreatment. Applied Physics (Prikladnaya Fizika). 2020;3: 33–39. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar y.ru/item.asp?id=43807692
Künstler-Hourriez B., Erné B., Lefévre F., … Etcheberry A. Surface reactivity of InSb studied by cyclic voltammetry coupled to XPS. Journal de Physique IV (Proceedings). 2006;132: 147–151. https://doi.org/10.1051/jp4:2006132029
Gong X. Y., Yamaguchi T., Kan H., … Rinfret R. Sulphur passivation of InAs. Applied Surface Science. 1997;113/114: 388–392. https://doi.org/10.1016/S0169-4332(96)00936-1
Richard O., Blais S., Arès R., Aimez V., Jaouad A. Mechanisms of GaAs surface passivation by a one-step dry process using low-frequency plasma enhanced chemical deposition of silicon nitride. Microelectronic Engineering. 2020;233: 111398. https://doi.org/10.1016/j.mee.2020.111398
Chellu A., Koivusalo E., Raappana M., … Hakkarainen T. Nanotechnology paper GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices. Nanotechnology. 2021;32(13): 130001. https://doi.org/10.1088/1361-6528/abd0b4
Mehdi H., Réveret F., Robert-Goumet C… Pelissier B. Investigation of N2 plasma GaAs surface passivation efficiency against air exposure: towards an enhanced diode. Applied Surface Science. 2022;579: 152191. https://doi.org/10.1016/j.apsusc.2021.152191
Syrov Y. V. Interaction of indium antimonide with saturated sulfur vapor. Doklady Chemistry. 2016;471(2): 365–367. https://doi.org/10.1134/S0012500816120077
Dobrovol’skij D. S., Davygora A. P., Syrov Yu. V., Molodcova E. V. Physical-chemical processes in condensed matter and interfaces: theses of VII Russian conference, 10–13 November 2015, Voronezh. Voronezh: Izdatel’sko-poligraficheskij centr “Nauchnaya kniga”; 2015. pp. 192–193. (In Russ.)
龚晓霞, 李德香, 张丽霞, 吴宇, 杨雪, 种苏然, 杨 文运, 太云见, 黄晖. Polishing method of indium antimonide single crystal wafer. Patent CN110788739A, B24B 57/02, C09G 1/0; № CN201911058927.XA; Application 31.10.2019; Publ. 14.02.2020.
Levchenko I., Tomashyk V., Stratiychuk I., Malanych G. Formation of the InAs-, InSb-, GaAs-, and GaSb-polished surface. Applied Nanoscience. 2018;8: 949–953. https://doi.org/10.1007/s13204-018-0788-7
高飞, 李晖, 徐世海,张颖武, 练小正, 张弛, 王磊, 徐永宽, 程红娟. A kind of polishing method for gallium antimonide monocrystalline piece. Patent No CN 10664326B, B24B1/0, B24B; No CN201610615129.2A; Application 01.08.2016; Publ. 03.06.2018. Available at: https://patents.google.com/ patent/CN106064326A/en
李超, 林泉, 郑安生, 龙彪, 马锦伟. Doublesurface polishing method for gallium antimonide wafer. Patent No CN102554750A, H01L 21/304; No CN2010106226200A; Application 29.12.2009; Publ. 11.07.2012.
Kovalishina E. A. Method of finish chemicalmechanical polish InAs. Patent No RU2582904C1, H01L 21/304; No 2014153880/28; Appl. 29.12.2014; Publ. 27.04.2016, bul. No 12. (In Russ.). Available at: https://patents.google.com/patent/RU2582904C1/en
Kiseleva L. V., Boltar’ K. O., Vlasov P. V., … Savostin A. V. Method for chemical-mechanical polish of gallium arsenide wafers. Patent No RU2545295C1, C30B 33/00, H01L 21/304, H01L 21/306, C30B 29/42; No 2014103552/05; Appl. 03.02.2014; Publ. 27.03.2015, bul. No 9. (In Russ.). Available at: https://yandex.ru/patents/doc/RU2545295C1_20150327
Nakayama M., Itami H., Yamazaki T., Itami H. Mechano-chemical polishing method for GaAs wafer. Patent No DE102008004441A1, H01L 21/302, C09G 1/04; No 2007-030735; Application 09.02.2007; Publ. 14.08.2008. Available at: https://patents.google.com/patent/EP1763071A1/en
Matovu J. B., Ong P., Leunissen L. H. A., Krishnan S., Babu S. V. Use of multifunctional carboxylic acids and hydrogen peroxide to improve surface quality and minimize phosphine evolution during chemical mechanical polishing of indium phosphide surfaces. Industrial and Engineering Chemistry Research. 2013;52: 10664−10672. https://doi.org/10.1021/ie400689q
Morisawa Y., Kikuma I., Takayama N., Takeuchi M. Mirror polishing of InP wafer surfaces with NaOCl-citric acid. Applied Surface Science.1996;92: 147–150. https://doi.org/10.1016/0169-4332(95)00219-7
Morisawa Y., Kikuma I., Takayama N., Takeuchi M. Effect of SiO2 powder on mirror polishing of InP wafers. Journal of Electronic Materials. 1996;26(1): 34–36. https://doi.org/10.1007/s11664-997-0130-8
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.