Выделение парциальных сопряженных процессов анодного окисления ОН-иона на золоте сочетанием метода графо-кинетического анализа и данных линейной вольтамперометрии

  • Илья Давидович Зарцын ФГБОУ ВО Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация
  • Александр Викторович Введенский ФГБОУ ВО Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация
  • Елена Валерьевна Бобринская ФГБОУ ВО Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-7123-4224
  • Олег Александрович Козадеров ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-0249-9517
Ключевые слова: электродные процессы, сопряжение, графо-кинетический анализ, адсорбция, вольтамперометрия

Аннотация

Наличие нескольких взаимосвязанных электрохимических процессов, протекающих на поверхности электрода, строго говоря, не позволяет использовать принцип независимого протекания реакций. Зачастую парциальные реакции сложного многостадийного электрохимического процесса сопряжены как через общие интермедиаты, так и за счет конкурирующей адсорбции электроактивных частиц. Наличие сопряжения приводит либо к изменению потенциала, при котором становится возможен соответствующий электрохимический процесс, либо к изменению скорости парциальных процессов. Последнее носит название кинетического сопряжения. Это не позволяет рассчитать скорость каждой парциальной реакции просто как разность между плотностью тока целевого и фонового процессов. Для установления кинетических закономерностей подобных процессов может быть использован метод
кинетических диаграмм. В настоящей работе показано, что данный метод применим не только при анализе сопряженных электрохимических процессов разного типа, но может быть использован и в ходе получения парциальных токов стадий отдельной сложной электродной реакции, протекающей в фоновом растворе. В качестве примера рассмотрены варианты кинетического моделирования суммарной вольтамперограммы анодного процесса на Au-электроде в водной щелочной среде в режиме линейного изменения потенциала.

Рассчитаны стационарные степени заполнения поверхности золота различными поверхностноктивными формами кислорода в зависимости от потенциала электрода. Установлено, что изменение концентрации ОН--ионовсказывается в основном на области потенциалов их адсорбции. Проведен детальный анализ стационарных парциальных анодных процессов в системе Au|OH–,H2O, расчетным путем определена форма общей стационарной вольтамперограммы. Последняя качественно согласуется с экспериментальной поляризационной зависимостью.

Показано, что вид расчетных поляризационных зависимостей определяется степенью обратимости отдельных стадий и скоростью их протекания. Подобный анализ необходим не только для детализации схемы самой фоновой анодной реакции на золоте в щелочном растворе, но и в плане последующего кинетического описания процесса электроокисления органических веществ на золотом электроде

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Илья Давидович Зарцын, ФГБОУ ВО Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

д. х. н., профессор кафедры физической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Александр Викторович Введенский, ФГБОУ ВО Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

д. х. н., профессор, профессор кафедры физической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Елена Валерьевна Бобринская, ФГБОУ ВО Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

к. х. н., доцент кафедры физической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Олег Александрович Козадеров, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. х. н., доцент, заведующий кафедрой физической химии, Воронежский государственный университет, (Воронеж, Российская Федерация)

Литература

Zartcyn I. D., Shugurov A. E., Marshakov I. K. Thermodynamic coupling of anode and cathodic reactions in case of metal dissolution in the electrolytes. Tambov University Reports. Series Natural and Technical Sciences. 1997;2: 23–26. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar y.ru/item.asp?id=16398081

Zartcyn I. D., Shugurov A. E., Marshakov I. K. The anomalous dissolution of iron as a result of the chemical conjugation between iron ionization and hydrogen evolution. Protection of Metals. 2001;37(2): 138–143. https://doi.org/10.1023/a:1010369904266

Zartcyn I. D., Shugurov A. E., Marshakov I. K. Kinetics of chemically conjugate reactions of metal dissolution in the presence of oxidant. Protection of Metals. 2000;36(2): 140–145. https://doi.org/10.1007/bf02758337

Zhen C.-H., Sun S.-G., Fan C.-J., Chen S.-P., Mao B.-W., Fan Y.-J. In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au (111) electrode in alkaline solutions. Electrochimica Acta. 2004;49(8): 1249–1255. https://doi.org/10.1016/j.electacta.2003.09.048

Chun-Hua Z., Chun-Jie F., Yan-Juan G., Sheng- Pei C., Shi-Gang S. Adsorption and oxidation of glycine on Au film electrodes in alkaline solutions. Acta Physico-Chimica Sinica. 2003;19: 60–64. https://doi.org/10.3866/pku.whxb20030114

Beltowska-Brzezinka M., Łuczak T., Holze R. Electrocatalytic oxidation of mono- and polyhydric alcohols on gold and platinum. Journal of Applied Electrochemistry. 1997;27(9): 999–1011. https://doi.org/10.1023/A:1018422206817

Kraschenko T. G., Bobrinskaya E. V., Vvedenskii A. V., Kuleshova N. E. Kinetics of electrochemical oxidation of anion glycine on gold. Condensed Matter and Interphases. 2014;16 (1): 42–49. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=21490889

Goldshtein B. N., Volkenshtein M. V. Investigation of nonstationary complex monomolecular reactions by the graph method*. Doklady of the USSR Academy of Sciences. 1968;78: 386–388. (In Russ.)

Goldshtein B. N., Magarshak D. B., Volkenshtein M. V. Analysis of monosubstrate enzyme reactions by graph method*. Doklady of the USSR Academy of Sciences. 1970;191: 1172–1174. (In Russ.)

Goldshtein B. N., Shevelev E. A., Volkenshtein M. V. Stability analysis of enzyme systems with feedbacks by the graph method*. Doklady of the USSR Academy of Sciences. 1983;273: 486–488. (In Russ.)

Goldshtein B. N., Volkenshtein M. V. Simple kinetic models explaining critical phenomena in enzymatic reactions with enzyme and substrate isomerization*. Doklady of the USSR Academy of Sciences. 1988;22: 1381–1392. (In Russ.)

Štrbac S., Hamelin A., Adžić R. R. Electrochemical indication of surface reconstruction of (100), (311) and (111) gold faces in alkaline solutions. Journal of Electroanalytical Chemistry. 1993;362: 47–53. https://doi.org/10.1016/0022-0728(93)80005-3

Chang S. C., Ho Y., Weaver M. J. Applications of real-time FTIR spectroscopy to the elucidation of complex electroorganic pathways: electrooxidation of ethylene glycol on gold, platinum, and nickel in alkaline solution. Journal of the American Chemical Society. 1991;113(25): 9506–9513. https://doi.org/10.1021/ja00025a014

Beltramo G. L., Shubina T. E., Koper M. T. M. Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT. ChemPhysChem. 2005;6: 2597–2606. https://doi.org/10.1002/cphc.200500198

Martins M. E., Córdova O. R., Arvia A. J. The potentio dynamic electro for mation and electroreduction of the O-containing layer on gold in alkaline solutions. Electrochimica Acta. 1981;26: 1547–1554. https://doi.org/10.1016/0013-4686(81)85127-4

Bruckenstein S., Shay M. An in situ weighing study of the mechanism for the formation of the adsorbed exygen monolayer at gold electrode Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1985;188: 131–136. https://doi.org/10.1016/s0022-0728(85)80057-7

Burke L. D. Cunnane V. J., Lee B. H. Unusual postmonolayer oxide behavior of gold electrodes in base. Journal of The Electrochemical Society. 1992;139: 399–406. https://doi.org/10.1149/1.2069230

Vitus C. M., Davenport A. J. In situ scanning tunneling microscopy studies of the formation and reduction of a gold oxide monolayer on Au(111). Journal of The Electrochemical Society. 1994;1413(5): 1291–1298. https://doi.org/10.1149/1.2054912

Goldshtein B. N., Zalkind Ts. I., Veselovskii V.I. Electrochemical adsorption of oxygen on a gold electrode in solutions of chloric and sulfuric acids*. Soviet Electrochemistry. 1973;9 (5): 699–702. (In Russ.)

Chen A., Lipkowski J. Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode. The Journal of Physical Chemistry B. 1999;103: 682–691. https://doi.org/10.1021/jp9836372

Vetter K. J. Elektrochemische kinetik. Springer Berlin, Heidelberg; 1961. https://doi.org/10.1007/978-3-642-86547-3

Tremiliosi-Filho G., Gonzalez E. R., Motheo A. J., Belgsir E. M., Léger J.-M., Lamy C. Journal of Electroanalytical Chemistry. 1998;444: 31–39. https://doi.org/10.1016/S0022-0728(97)00536-6

Nechaev I. V., Vvedenskii A. V. Quantum chemical modeling of hydroxide ion adsorption on group IB metals from aqueous solutions. Protection of Metals and Physical Chemistry of Surfaces. 2009;45(4): 391–397. https://doi.org/10.1134/s2070205109040029

Patritio E. M., Olivera P. P., Sellers H. The nature of chemosorbed hydroxyl radicals. Surface Science. 1994;306: 447–458. https://doi.org/10.1016/0039-6028(94)90085-x

Alonso C., Gonzalez-Velasco J. Study of the electrooxidation of 1,3-propanediol on a gold electrode in basic medium. Journal of Applied Electrochemistry. 1988;18: 538–545. https://doi.org/10.1007/bf01022248

Safronov A. U., Kristensen P. A. IR spectroscopic characteristics of the surface of the gold electrode in solutions with different pH*. Soviet Electrochemistry. 1990;26(7): 869–873. (In Russ.)

Kirk D. W., Foulkes F. R., Graydon W. F. The electrochemical formation of Au(I) hydroxide on gold in aqueous potassium hydroxide. Journal of The Electrochemical Society. 1980;127(10): 1069–1076. https://doi.org/10.1149/1.2129819

Icenhower D. E., Urbach H. B., Harrison J. H. Use of the potential-step method to measure surface oxides. Journal of The Electrochemical Society. 1970; 117(12): 1500–1506. https://doi.org/10.1149/1.2407359

Štrbac S., Adžić R. R. The influence of OHchemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions. Journal of Electroanalytical Chemistry. 1996;403: 169–181. https://doi.org/10.1016/0022-0728(95)04389-6

Burke L. D. Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states. Gold Bulletin. 2004;37(1-2): 125–135. https://doi.org/10.1007/bf03215520

Dobberpuhl D. A., Johnson D. C. Pulsed electrochemical detection at ring of a ring-disk electrode applied to a study of amine adsorption at gold electrodes. Analytical Chemistry. 1995;67: 1254–1258. https://doi.org/10.1021/ac00103a017

Xiao Sun S.-G., Yao J.-L., Wu Q.-H., Tian Z.-Q. Surface-enhanced Raman spectroscopic studies of dissotiative adsorption of amino acids on platinum and gold electrodes in alkaline solutions. Langmuir. 2002;18: 6274-6279. https://doi.org/10.1021/la025817f

Hill T. L. Studies in irreversible thermodynamic IV. Diagramatic representation of steady state fluxes for unimolecular systems. Journal of Theoretical Biology. 1966; 10: 442–459. https://doi.org/10.1016/0022-5193(66)90137-8

Goldshtein B. N. Kinetic graphs in enzymology. Мoscow: Nauka Publ.; 1989. 164 p. (In Russ.)

Volkenshtein M. V., Goldshtein B. N., Stefanov V. E. Investigation of nonstationary enzyme reactions. Doklady of the USSR Academy of Sciences. 1967;1: 52–58. (In Russ.)

Suhotin A. M. Handbook of electrochemistry*. Мoscow: Khimiya Publ.; 1981. 487 p. (In Russ.)

Опубликован
2024-01-31
Как цитировать
Зарцын, И. Д., Введенский, А. В., Бобринская, Е. В., & Козадеров, О. А. (2024). Выделение парциальных сопряженных процессов анодного окисления ОН-иона на золоте сочетанием метода графо-кинетического анализа и данных линейной вольтамперометрии. Конденсированные среды и межфазные границы, 26(1), 55-67. https://doi.org/10.17308/kcmf.2024.26/11809
Раздел
Оригинальные статьи