Электрофизические свойства композитных материалов на основе оксида графена и полианилина
Аннотация
Методом Холла изучены электрофизические характеристики композитных материалов на основе полианилина (ПАНИ), оксида графена (ОГ) с марганцем. Проведено сравнение этих характеристик композитных систем состава ОГ-ПАНИ и ОГ-ПАНИ-Mn с мономатериалами ОГ и ПАНИ.
Показано, что электрическая проводимость композитов значительно выше, чем мономатериалов и обусловлена подвижностью носителей заряда.
По данным УФ-видимой и ИК-спектроскопии определено, что ширина оптической запрещенной зоны (Eg) композита ОГ-ПАНИ увеличивается при добавлении металла, но уменьшается по сравнению с ПАНИ, смещение характеристических колебаний в область более низких частот свидетельствует о ковалентном взаимодействии композита ОГ-ПАНИ с катионами марганца
Скачивания
Литература
Baskakov S. A., Shulga Yu. M., Baskakova Yu. V., Zolotarenko A. D., Kuznetsov I. E., Efimov O. N., Gusev A. L. New composite materials for supercapacitor electrodes based on reduced oxide graphene and polyaniline. International scientific journal for Alternative Energy and Ecology. 2012;12(116): 66–76.
Yang D. Application of nanocomposites for supercapacitors: Characteristics and properties. Nanocomposites – New Trends and Developments. 2012. https://doi.org/10.5772/50409
Salvatierra R. V., Zitzer G., Savu S.-A., … Rocco M. L. M. Carbon nanotube/polyaniline nanocomposites: Electronic structure, doping level and morphology investigations. Synthetic Metals. 2015;203: 16–21 https://doi.org/10.1016/j.synthmet.2015.01.034
Singh G., Kumar Y., Husain S. Fabrication of symmetric polyaniline/nano-titanium dioxide/activated carbon supercapacitor device in different electrolytic mediums: Role of high surface area of carbon and facile interactions with nano-titanium dioxide for high-performance supercapacitor. Energy Technology. 2023;11(1): 2200931. https://doi.org/10.1002/ente.202200931
Savić M., Janošević Ležaić A., Gavrilov N., … Ćirić-Marjanović G. Carbonization of MOF-5/polyaniline composites to N, O-doped carbon/ZnO/ZnS and N, O-doped carbon/ZnO composites with high specific capacitance, specific surface area and electrical conductivity. Materials. 2023;16(3): 1018. https://doi.org/10.3390/ma16031018
Lv P., Tang X., Zheng R., Ma X., Yu K., Wei W. Graphene/polyaniline aerogel with superelasticity and high capacitance as highly compression-tolerant supercapacitor electrode. Nanoscale Research Letters. 2017;12(1): 1–11. https://doi.org/10.1186/s11671-017-2395-z
Wang S., Tan Z., Li Y., Sun L., Zhang T. Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochimica Acta. 2006;441(2): 191–194. https://doi.org/10.1016/j.tca.2005.05.020
Sawarkar M., Pande S. A, Agrawal P. S. Synthesis and characterization of polyaniline doped metal oxide nanocomposites. International Research Journal of Engineering and Technology. 2015;2(9): 2427–2432. https://www.irjet.net/archives/V2/i9/IRJET-V2I9295.pdf
Mostafaei A., Zolriasatein A Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress in Natural Science: Materials International. 2012;22(4): 273–280. https://doi.org/10.1016/j.pnsc.2012.07.002
Chen L., Sun L., Luan F., … Liu, X. X. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. Journal of Power Sources. 2010;195(11):3742–3747. https://doi.org/10.1016/j.jpowsour.2009.12.036
Lei X., Su Z. Conducting polyaniline coated nano silica by in situ chemical oxidative grafting polymerization. Polymer Advanced Technology. 2007;18(6): 472–476 https://doi.org/10.1002/pat.905
Gorshkov N. V., Yakovleva E. V., Krasnov V. V., … Yakovlev A. V. Electrode for a supercapacitor based on electrochemically synthesized multilayer graphene oxide. Russian Journal of Applied Chemistry, 2021;94(3): 388–396. https://doi.org/ https://doi.org/10.1134/s1070427221030149
Shao Y., El-Kady M. F., Wang L. J., … Kaner R. B. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews. 2015;44: 3639–3665. https://doi.org/10.1039/c4cs00316k
Cai Y., Ke Q., Zhang G., Feng Y. P., Vivek B. S., Zhang Y. W. Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Advanced Functional Materials. 2015; 25: 2230e6. https://doi.org/10.1002/adfm.201404294
Wang G. K., Sun X., Lu F. Y., … Lian J. Flexible pillared graphene-paper electrodes for highperformance electrochemical supercapacitors. Small. 2012;8: 452e9. https://doi.org/10.1002/smll.201101719
Moussa M., El-kady M. F., Zhao Z. Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology 2016;27(44): 42001–42021. https://doi.org/10.1088/0957-4484/27/44/442001
Kumar R., Jahan K., Nagarale R. K., Sharma A., Long N. Lasting electro-osmotic pump with polyaniline-wrapped aminated graphene electrodes. ACS Applied Materials and Interfaces. 2015;7(1): 593−601. https://doi.org/10.1021/am506766e
Shmatko V.A., Myasoedova T. N., Mikhailova T. A., Yalovega G. E. Features of the Electronic structure and chemical bonds of polyanilinebased composites obtained by acid-free synthesis. Condensed Matter and Interphases, 2019;21(4): 569–578. https://doi.org/10.17308/kcmf.2019.21/2367
Myasoedova T. N., Nedoedkova O. V., Kalusulingam R., Mikheykin A. S., Konstantinov A. S., Yalovega G. E. Morphology, molecular and electronic structure of a composite material based on graphene oxide and polyaniline. Physics of the Solid State. 2023; 65(12). https://doi.org/10.61011/FTT.2023.12.56723.4935k
Konwer S., Guha A. K., Dolui S. K. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. Journal of Materials Science. 2013;48: 1729–1739. https://doi.org/10.1007/s10853-012-6931-z
Konwer S. Graphene oxide-polyaniline nanocomposites for high performance supercapacitor and their optical, electrical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2016;27(4): 4139–4146. https://doi.org/10.1007/s10854-016-4273-3
Mallick K., Witcomb M. J., Dinsmore A., Scurrell M. S. Polymerization of aniline by cupric sulfate: A facile synthetic route for producing polyaniline. Journal of Polymer Research. 2006;13: 397–401. https://doi.org/10.1007/s10965-006-9057-7
Hu F., Li W., Zhang J., Meng W. Effect of graphene oxide as a dopant on the electrochemical performance of graphene oxide/polyaniline composite. Journal of Materials Science and Technology. 2014;30(4): 321–327. https://doi.org/10.1016/j.jmst.2013.10.009
Lu X., Yu Y., Chen L., Mao H., Zhang W., Wei Y. Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chemical Communications. 2004;13: 1522–1523. https://doi.org/10.1039/B403105A
Harish C., Sai Sreeharsha V., Santhosh C., … Nirmala Grace A. Synthesis of polyaniline/graphene nanocomposites and its optical, electrical and electrochemical properties advanced science. Advanced Science, Engineering and Medicine. 2013; 5(2): 140–148. https://doi.org/10.1166/asem.2013.1237
Myasoedova T. N., Moiseeva T. A., Kremennaya M. A., Tirkeshov A., Yalovega G. E. Structure and electrochemical properties of PANI/ZrOX and PANI/SiOX composites. Journal of Electronic Materials. 2020;49(8): 4707–4713. https://doi.org/10.1007/s11664-020-08170-2
Lai L., Chen L., Zhan D., … Lin J. One-step synthesis of NH2−graphene from in situ graphene−oxide reduction and its improved electrochemical properties. Carbon. 2011;49: 3250–3257. https://doi.org/10.1016/j.carbon.2011.03.051
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.