Теоретическое исследование галогенированных производных антрацена: электронный и молекулярный аспект
Аннотация
В статье рассматриваются последствия галогенирования антрацена, одного из представителей полициклических ароматических углеводородов (ПАУ). С использованием метода теории функционала плотности (DFT) всесторонне исследован сложный характер взаимодействий между атомами галогена и молекулярной структурой антрацена. Взаимодействие галогенов, таких как фтор, хлор и бром, с ароматическими кольцами вызывает ряд изменений в электронной структуре, реакционной способности и оптических свойствах антрацена. Представленное исследование охватывает разнообразные аналитические аспекты и строится на основе анализа молекулярных орбиталей и
плотности состояний, УФ- и оптической спектроскопии, ИК-спектроскопии, ЯМР-спектроскопии и натурального анализа заселенностей (NBO), раскрывая сложную картину молекулярных модификаций. Электронные переходы, вибрационные сигнатуры и смещения в спектрах ЯМР галогенированных производных антрацена отражают динамику модификаций, происходящих под воздействием галогенирования. В работе также рассматриваются перспективы использования галогенсодержащих производных антрацена в медицине, экологии и оптоэлектронике. В статье всесторонне освещаются как теоретический, так и практический аспект
Скачивания
Литература
Rebaz O. Rashid R., Othman K. Exploring The Synthesis of 1,2,4-Triazole Derivatives: A Comprehensive Review. Journal of Physical Chemistry and Functional Materials. 2023;6(1): 43–56, https://doi.org/10.54565/jphcfum.1263834
Omar R. Koparir P., Koparir M. Synthesis of 1,3-thiazole derivatives. Indian Drugs. 2021:58(1):7–19. https://doi.org/10.53879/id.58.01.12427
Tang M., Yu Q., Wang Z., … Zhang F. L. Synthesis of polycyclic aromatic hydrocarbons (PAHs) via a transient directing group. Organic Letters. 2018;20(23): 7620–7623. https://doi.org/10.1021/acs.orglett.8b03359
Lawal A. T. and Fantke P. Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science. 2017;3(1): 1339841. https://doi.org/10.1080/23311843.2017.1339841
Ding Z. B. Tommasini M., Maestri M. A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces. Reaction Chemistry & Engineering. 2019;4(2): 410–417. https://doi.org/10.1039/c8re00229k
Rebaz O. Ahmed L. Koparir P., Jwameer H. Impact of solvent polarity on the molecular properties of dimetridazole. El-Cezeri Fen ve Mühendislik Dergisi. 2022;9(2): 740–747. https://doi.org/10.31202/ecjse.1000757
Mccoull K. D. Rindgen D. Blair I. A. and Penning T. M. Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanineadducts. Chemical Research in Toxicology.1999;12(3): 237–246, https://doi.org/10.1021/tx980182z
Sahoo B. M. Ravi Kumar B. V. V., Banik B. K., Borah P. Polyaromatic hydrocarbons (PAHs): structures, synthesis and their biological profile. Current Organic Synthesis. 2020;17(8): 625–640. https://doi.org/10.2174/1570179417666200713182441
Barbosa F., Jr. Rocha B. A., Souza M. C. O., … Campiglia A. D. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. Journal of Toxicology and Environmental Health, Part B. 2023;26(1): 28 65. https://doi.org/10.1080/10937404.2022.2164390
Palmer A. J. Ghani R. A. Kaur N. Phanstiel O., Wallace H. M. A putrescine–anthracene conjugate: a paradigm for selective drug delivery. Biochemical Journal. 2009;424(3): 431–438. https://doi.org/10.1042/BJ20090815
Koparir P., Parlak A. E., Karatepe A., Omar R. A. Elucidation of potential anticancer, antioxidant and antimicrobial properties of some new triazole compounds bearing pyridine-4-yl moiety and cyclobutane ring. Arabian Journal of Chemistry. 2022;15(7): 103957. https://doi.org/10.1016/j.arabjc.2022.103957
Haritash A. K., Kaushik C. P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials. 2009;169(1-3): 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137
Abdel-Shafy H. I., Mansour M. S. M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum. 2016;25(1): 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011
Li W., Wu S. Challenges of halogenated polycyclic aromatic hydrocarbons in foods: Occurrence, risk, and formation. Trends in Food Science & Technology. 2023;131: 1–13. https://doi.org/10.1016/j.tifs.2022.11.015
Montgomery Jr. J. A., Frisch M. J., Ochterski J. W., Petersson G. A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. The Journal of Chemical Physics. 1999; 110(6): 2822–2827. https://doi.org/10.1063/1.477924
Rasul H. H., Mamad D. M., Azeez Y. H., Omer R. A., Omer K. A. Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds. Computational and Theoretical Chemistry. 2023;1225: 114177. https://doi.org/10.1016/j.comptc.2023.114177
Omer R. A. Koparir P., Ahmed L. Theoretical determination of corrosion inhibitor activities of 4-allyl-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiolthione tautomerism. Indian Journal of Chemical Technology. 2022;29(1): 75–81. https://doi.org/10.56042/ijct.v29i1.51231
Omer R., Koparir P., Koparir M., Rashid R., Ahmed L., Hama J. Synthesis, Characterization and DFT Study of 1-(3-Mesityl-3-methylcyclobutyl)-2-((4- phenyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio) ethan-1-one. Protection of Metals and Physical Chemistry of Surfaces. 2022;58(5): 1077–1089. https://doi.org/10.1134/S2070205122050185
Costa A. C., Jr. Ondar G. F., Versiane O., …Tellez Soto C. A. DFT: B3LYP/6-311G (d, p) vibrational analysis of bis-(diethyldithiocarbamate)zinc (II) and natural bond orbitals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;105: 251–258. https://doi.org/10.1016/j.saa.2012.11.097
Tirado-Rives J., Jorgensen W. L. Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation. 2008;4(2): 297–306. https://doi.org/10.1021/ct700248k
Nasidi I. I., Kaygili O., Majid A., Bulut N., Alkhedher M., ElDin S. M. Halogen doping to control the band gap of ascorbic acid: A theoretical study. ACS Omega. 2022; 7(48): 44390–44397. https://doi.org/10.1021/acsomega.2c06075
Dittmer D. C., Chang P. L., Davis F. A., Iwanami M., Stamos I. Takahashi K. Derivatives of thiacyclobutene (thiete). VI. Synthesis and properties of some thietes. The Journal of Organic Chemistry. 1972;37(8): 1111–1115. https://doi.org/10.1021/jo00973a008
Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics. 1993;98(7): 5648–5652, https://doi.org/10.1063/1.464913
Wilbur D., Manning W. B., Hilton B. D., Muschik G. M. Carbon-13 NMR of polycyclic aromatic compounds. 1-Methoxybenz[a]anthracene-7, 12-diones. Organic Magnetic Resonance. 1982;18(2): 63–67, https://doi.org/10.1002/mrc.1270180202
Aihara J. Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A. 1999;103(37): 7487–7495. https://doi.org/doi.org/10.1021/jp990092i
Sun Z., Wu J. Open-shell polycyclic aromatic hydrocarbons. Journal of Materials Chemistry. 2012;22(10): 4151–4160, https://doi.org/10.1039/C1JM14786B
Aziz S. B., Abdullah O. G., Hussein A. M., … Mohammed A. R. Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: two methods for band gap study. Journal of Materials Science: Materials in Electronics. 2017;28: 7473–7479. https://doi.org/10.1007/s10854-017-6437-1
Sarmah A. , Hobza P. Directly linked metalloporphyrins: a quest for bio-inspired materials. Materials Advances. 2020;1(6): 1895–1908. https://doi.org/10.1039/d0ma00461h
Lazarou Y. G., Prosmitis A. V., Papadimitriou V. C., Papagiannakopoulos P. Theoretical calculation of bond dissociation energies and enthalpies of formation for halogenated molecules. The Journal of PhysicalChemistry A. 2001;105(27): 6729–6742. https://doi.org/10.1021/jp010309k
Tang M. L., Bao Z. Halogenated materials as organic semiconductors. Chemistry of Materials. 2011;23(3): 446–455. https://doi.org/10.1021/cm102182x
Akbas E., Othman K. A., Çelikezen F. Ç., … Mardinoglu A. Synthesis and biological evaluation of novel benzylidene thiazolo pyrimidin-3(5H)-one derivatives. Polycyclic Aromatic Compounds. 2023: 1–18. https://doi.org/10.1080/10406638.2023.2228961
Wang D., Chen L., Shi C., … Chen Y. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps. Scientific Reports. 2016;6(1): 28487. https://doi.org/10.1038/srep28487
Janietz S., Bradley D., Grell M., Giebeler C., Inbasekaran M., Woo E. Electrochemical determination of the ionization potential and electron affinity of poly (9, 9-dioctyl fluorene). Applied Physics Letters.1998;73(17): 2453–2455. https://doi.org/10.1063/1.122479
Pearson R. G. Chemical hardness and density functional theory. Journal of Chemical Sciences. 2005;117: 369–377. https://doi.org/10.1007/BF02708340
Chattaraj P. K., Roy D. R. Update 1 of: electrophilicity index. Chemical Reviews. 2007;107(9): PR46–PR74. https://doi.org/10.1021/cr078014b
Mayr H., Patz M. Scales of nucleophilicity and electrophilicity: a system for ordering polar organic and organometallic reactions. Angewandte Chemie International Edition in English. 1994;33(9): 938–957. https://doi.org/10.1002/anie.199409381
Ceylan Ü., Tarı G. Ö., Gökce H., Ağar E. Spectroscopic (FT–IR and UV–Vis) and theoretical (HF and DFT) in vestigation of 2 - Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline. Journal of Molecular Structure. 2016;1110: 1–10. https://doi.org/10.1016/j.molstruc.2016.01.019
Esme A. Experimental (FT-IR, FT-Raman, and UV-Vis) and quantum chemical calculations on monomer and dimer structures of l-hydroxy-2-naphthoic acid using the DFT and TD-DFT methods. Indian Journal of Pure & Applied Physics (IJPAP). 2019;57(11): 822–835. Режим доступа: http://op.niscpr.res.in/index.php/IJPAP/article/view/21985
Jagdale B. S., Ashok Adole V., Bhavsing Pawar T., Desale B. S. Molecular structure, frontier molecular orbitals, MESP and UV–visible spectroscopy studies of ethyl 4-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-1,2,3,4-etrahydropyrimidine-5-carboxylate: a theoretical and experimental appraisal. Material Science Research India. 2020;17(Special issue 1): 13–26. https://doi.org/10.13005/msri.17.special-issue1.04
Li A., Draine B. Do the infrared emission features need ultraviolet excitation? The polycyclic aromatic hydrocarbon model in UV-poor reflection nebulae. The Astrophysical Journal. 2002;572(1): 232–237. https://doi.org/10.1086/340285
Arfsten D. P., Schaeffer D. J., Mulveny D. C. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review. Ecotoxicology and Environmental Safety. 1996;33(1): 1–24. https://doi.org/10.1006/eesa.1996.0001
Jones R. N. The ultraviolet absorption spectra of anthracene derivatives. Chemical Reviews. 1947;41(2): 353–371, https://doi.org/10.1021/cr60129a013
Makula P., Pacia M., Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. The Journal of Physical Chemistry Letters. 2018;9(23): 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892
Wodrich M. D., Corminboeuf C., Schreiner P. R., Fokin A. A., Schleyer P. v. R. How accurate are DFT treatments of organic energies? Organic Letters. 2007;9(10): 1851–1854. https://doi.org/10.1021/ol070354w
Swofford R. L., Long M. E., Albrecht A. C. C–H vibrational states of benzene, naphthalene, and anthracene in the visible region by thermal lensing spectroscopy and the local mode model. The Journal of Chemical Physics. 1976;65(1): 179–190. https://doi.org/10.1063/1.432815
Ricks A. M., Douberly G. E., Duncan M. A. The infrared spectrum of protonated naphthalene and its relevance for the unidentified infrared bands. The Astrophysical Journal. 2009;702(1): 301–306. https://doi.org/10.1088/0004-637X/702/1/301
Szczepanski J., Vala M., Talbi D. ,Parisel O., Ellinger Y. Electronic and vibrational spectra of matrix isolated anthracene radical cations: Experimental and theoretical aspects. The Journal of Chemical Physics. 1993;98(6): 4494–4511. https://doi.org/10.1063/1.465009
Mcclellan A. L., Pimentel G. C. Vibrational assignment and thermodynamic properties of naphthalene. The Journal of Chemical Physics. 1955;23(2): 245–248. https://doi.org/10.1063/1.1741948
Srivastava A., Singh V. B. Theoretical and experimental studies of vibrational spectra of naphthalene and its cation. Indian Journal of Pure & Applied Physics. 2007;45: 714–720.
Haenen H. T. M. Potential probe measurement analysis and charge distribution determination. Journal of Electrostatics. 1977;2: 203–222, https://doi.org/10.1016/0304-3886(77)90054-7
Solano E. A., Mayer P. M. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface. The Journal of Chemical Physics. 2015;143(10). https://doi.org/10.1063/1.4930000
Pi X., Sun F., Gao J., … Liu H. A new insight into the SO2 adsorption behavior of oxidized carbon materials using model adsorbents and DFT calculations. Physical Chemistry Chemical Physics. 2019;21(18): 9181–9188. https://doi.org/10.1039/c8cp07782g
Modelli A., Mussoni L., Fabbri D. Electron affinities of polycyclic aromatic hydrocarbons by means of B3LYP/6-31+G* calculations. The Journal of Physical Chemistry A. 2006;110(20): 6482–6486. https://doi.org/10.1021/jp0605911
Domingo L. R., Aurell M. J., Pérez P., Contreras R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron. 2002;58(22): 4417–4423. https://doi.org/10.1016/s0040-4020(02)00410-6
Boukabcha N., Benmohammed A., Belhachemi M. H. M., … Djafri A. Spectral investigation, TD-DFT study, Hirshfeld surface analysis, NCI-RDG, HOMO-LUMO, chemical reactivity and NLO properties of 1-(4-luorobenzyl)-5-bromolindolin-2,3‑dione. Journal of Molecular Structure. 2023;1285: 135492. https://doi.org/10.1016/j.molstruc.2023.135492
Lu T., Chen F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry. 2012;33(5): 580–592. https://doi.org/10.1002/jcc.22885
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics. 1996; 14(1): 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Saidj M., Djafri A., Rahmani R., … Chouaih A. Molecular structure, experimental and theoretical vibrational spectroscopy, (HOMO-LUMO, NBO) investigation, (RDG, AIM) analysis, (MEP, NLO) study and molecular docking of ethyl-2-{[4-ethyl-5-(quinolin-8-yloxymethyl)-4H-1,2,4-triazol-3-yl] sulfanyl} acetate. Polycyclic Aromatic Compounds. 2023;43(3): 2152–2176. https://doi.org/10.1080/10406638.2022.2039238
Walters W. P., Murcko M. A. Prediction of ‘druglikeness’. Advanced Drug Delivery Reviews. 2002;54(3): 255–271. https://doi.org/10.1016/s0169-409x(02)00003-0
Ursu O., Rayan A., Goldblum A., Oprea T. I. Understanding drug-likeness. WIREs Computational Molecular Science. 2011;1(5): 760–781. https://doi.org/10.1002/wcms.52
Ranjith P., Ignatious A., Panicker C. Y., … Anto P. Synthesis, spectroscopic characterization, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. Journal of Molecular Structure. 2022;1264: 133315. https://doi.org/10.1016/j.molstruc.2021.131217
Sumathi D., Thanikachalam V., Bharanidharan S., Saleem H., Babu N. R. Vibrational Characterization and Molecular Electronic Investigations of 2-acetyl-5-methylfuran using FT-IR, FT-Raman, UV–VIS, NMR, and DFT Methods. Journal of Fluorescence. 2022;32: 1005–1017. https://doi.org/10.1007/s10895-022-02903-8
Abbaz T., Bendjeddou A., Villemin D. Structure, electronic properties, NBO, NLO and chemi-cal reactivity of bis (1, 4-dithiafulvalene) derivatives: functional density theory study. International Journal of Advanced Chemistry. 2017;6(1): 18–25. https://doi.org/10.14419/ijac.v6i1.8668
Villemin D., Abbaz T., Bendjeddou A. Molecular structure, HOMO, LUMO, MEP, natural bond orbital analysis of benzo and anthraquinodimethane derivatives. Pharmaceutical and Biological Evaluations. 2018;5(2): 27. https://doi.org/10.26510/2394-0859.pbe.2018.04
Abbaz T., Bendjeddou A., Villemin D. Molecular structure, NBO analysis, first hyper polarizability, and homo-lumo studies of p-extended tetrathiafulvalene (EXTTF) derivatives connected to p-nitro phenyl by density functional method. International Journal of Advanced Chemistry. 2018;6(1): 114. https://doi.org/10.14419/ijac.v6i1.11126
Obot I., Macdonald D., Gasem Z. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science. 2015;99: 1–30. https://doi.org/10.1016/j.corsci.2015.01.037
Khan M. U., Khalid M., Asim S., … Imran M. Exploration of nonlinear optical properties of triphenylamine-dicyanovinylene coexisting donor-π- acceptor architecture by the modification of p-conjugated linker. Frontiers in Materials. 2021;8: 719971. https://doi.org/10.3389/fmats.2021.719971
Al-Shamiri H. A. S., Sakr M. E. M., Abdel-Latif S. A., … Elwahy A. H. M. Experimental and theoretical studies of linear and non-linear optical properties of novel fused-triazine derivatives for advanced technological applications. Scientific Reports. 2022;12(1): 19937. https://doi.org/10.1038/s41598-022-22311-z
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.