Получение и свойства конверсионных фосфатсодержащих покрытий на легированных редкоземельными элементами сплавах магния
Аннотация
Целью статьи был синтез и изучение структуры, качественного и количественного составов, а также защитных свойств в модельном растворе Хэнка фосфатсодержащих конверсионных покрытий на легированных редкоземельными элементами сплавах магния WE43, ZRE1 и QE22.
Методами сканирующей электронной микроскопии, энергодисперсионного и рентгенофазового анализа изучена морфология, микроструктура, элементный и фазовый составы легированных редкоземельными элементами магниевых сплавов QE22, ZRE1 и WE43, а также конверсионных покрытий, формируемых на их поверхности в процессе фосфатирования. С помощью линейной вольтамперометрии и электрохимической импедансной спектроскопии изучены кинетические особенности коррозии исследуемых образцов магниевых сплавов в растворе Хэнка (рН = 7.4), имитирующем внутреннюю среду организма, до и после фосфатирования.
Установлено, что фосфатирование магниевых сплавов, легированных редкоземельными элементами, приводит к образованию на их поверхности малорастворимых плотных мелкозернистых покрытий с ярко выраженной кристаллической структурой толщиной от 16 до 21 мкм. Полученные конверсионные покрытия характеризуются следующим элементным составом: Са ≈ 40 мас. %; Р ≈ 15 мас. %; О ≈ 35 мас. %. Показано, что кристаллическая структура фосфатсодержащего покрытия представлена фазой брушита (CaHPO4·2H2O).
В результате проведения электрохимических исследований коррозионного поведения магниевых сплавов в модельном растворе Хэнка (рН = 7.4) было установлено, что плотность тока коррозии уменьшается в ряду QE22, ZRE1, WE43 и составляет iкорр, А/см2: 5.2·10–5; 2.5·10–5; 2.0·10–5. Полученные конверсионное покрытие на основе брушита способствует снижению скорости коррозии магниевых сплавов QE22, ZRE1 и WE43 в 15.2, 7.8 и 6.3 раза соответственно.
Скачивания
Литература
Riaz U., Shabib I., Haider W. The current trends of Mg alloys in biomedical applications – A review. Journal Biomedical Materials Research – Part B Applied Biomaterials. 2019;107: 1970–1996. https://doi.org/10.1002/jbm.b.34290
Zheng Y. F., Gu X. N., Witte F. Biodegradable metals. Materials Science Engineering R: Reports. 2014; 77: 1–34. https://doi.org/10.1016/j.mser.2014.01.001
Tan J., Ramakrishna S. Applications of magnesium and its alloys : A review. Applied Sciences. 2021;11(15): 6861. https://doi.org/10.3390/app11156861
Król M. Solidification characteristics of Mg-Li-Al alloys. Solid State Phenomena. 2018;275: 41–52. https://doi.org/10.4028/www.scientific.net/SSP.275.41
Gusieva K., Davies C. H. J., Scully J. R., Birbilis N. Corrosion of magnesium alloys: The role of alloying. International Materials Reviews. 2015;60(3): 169–194. https://doi.org/10.1179/1743280414Y.0000000046
Antoniac I. V., Miculescu M., Mănescu V., … Earar K. Magnesium-based alloys used in orthopedic surgery. Materials. 2022;15(3): 1148. https://doi.org/10.3390/ma15031148
Gu X., Zheng Y., Cheng Y., Zhong S., Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2029;30(4): 484–498. https://doi.org/10.1016/j.biomaterials.2008.10.021
Drynda A., Deinet N., Braun N., Peuster M. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. Journal of Biomedical Materials Research – Part A. 2019;91: 360–369. https://doi.org/10.1002/jbm.a.32235
Ma Y., Talha M., Wang Q., Zhou N., Li Z., Lin Y. A multifunctional coating with modified calcium phosphate/chitosan for biodegradable magnesium alloys of implants. New Journal of Chemistry. 2022;46: 4436–4448. https://doi.org/10.1039/d2nj00147k
Kozina I., Krawiec H., Starowicz M., Kawalec M. Corrosion resistance of MgZn alloy covered by chitosan-based coatings. International Journal Molecular Sciences. 2021;22 (15): 8301. https://doi.org/10.3390/ijms22158301
Huang W., Mei D., Zhang J., … Guan S. Improved corrosion resistance and cytocompatibility of Mg– Zn–Y–Nd alloy by the electrografted polycaprolactone coating. Colloids Surfaces A: Physicochemical Engineering Aspects. 2021;629: 127471. https://doi.org/10.1016/j.colsurfa.2021.127471
Pulido-González N., Torres B., Zheludkevich M. L., Rams J. High Power Diode Laser (HPDL) surface treatments to improve the mechanical properties and the corrosion behaviour of Mg-Zn-Ca alloys for biodegradable implants. Surface and Coatings Technology. 2020;402: 126314. https://doi.org/10.1016/j.surfcoat.2020.126314
Liu Y., Curioni M., Dong S., Liu Z. Understanding the effects of excimer laser treatment on corrosion behavior of biodegradable Mg-1Ca alloy in simulated body fluid. Journal of Magnesium and Alloy. 2021;10(4): 1004–1023. https://doi.org/10.1016/j.jma.2021.11.011
Hou S., Yu W., Yang Z., Li Y., Yang L., Lang S. Properties of titanium oxide coating on MgZn alloy by magnetron sputtering for stent application. Coatings. 2020;10(10): 1–10. https://doi.org/10.3390/coatings10100999
Braga J. de O., Carvalho de S. M., Silva L. M. C., … Nunes E. H. M. Fabrication and characterization of dicalcium phosphate coatings deposited on magnesium substrates by a chemical conversion route. Surface and Coatings Technology. 2020;386: 125505. https://doi.org/10.1016/j.surfcoat.2020.125505
Sathyaraj M., Ravichandran K., Narayanan S. Controlling the rate of degradation of Mg using magnesium fluoride and magnesium fluoridemagnesium phosphate duplex coatings. Journal Magnesium and Alloy. 2022;10(1): 295–312. https://doi.org/10.1016/j.jma.2021.06.005
Cheng S., Wang W., Wang D., … Zhang Y. An invitro and in vivo comparison of Mg(OH)2-, MgF2- and HA-coated Mg in degradation and osteointegration. Biomaterials Science. 2020;8: 3320–3333. https://doi.org/10.1039/d0bm00467g
Chen X. B., Nisbet D. R., Li R. W., … Birbilis N. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomaterialia. 2014;10(3): 1463–1474. https://doi.org/10.1016/j.actbio.2013.11.016
Chunyan Z., Shangju L., Baoxing Y., … Fuhui W. Ratio of total acidity to pH value of coating bath: A new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys. Corrosion Science. 2019;150: 279–295. https://doi.org/10.1016/j.corsci.2019.01.046
Wu Q., Yu B., Zhou P., Zhang T., Wang F. Fabrication of phosphate conversion coatings on rolled AZ31 magnesium alloy: Variation of corrosion resistance on different planes induced by the crystallographic texture. Materials Chemistry and Physics. 2021;273: 125121. https://doi.org/10.1016/j.matchemphys.2021.125121
Chaharmahali R., Fattah-alhosseini A., Nouri M., Babaei K. Improving surface characteristics of PEO coatings of Mg and its alloys with zirconia nanoparticles: a review. Applied Surface Science Advances. 2021;6: 100131. https://doi.org/10.1016/j.apsadv.2021.100131
Seyfi M., Fattah-alhosseini A., Pajohi-Alamoti M. , Nikoomanzari E. Effect of ZnO nanoparticles addition to PEO coatings on AZ31B Mg alloy: antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution. Journal of Asian Ceramic Societies. 2021;9(3): 1114–1127. https://doi.org/10.1080/21870764.2021.1940728
Daavari M., Atapour M., Mohedano M., … Taherizadeh A. Quasi-in vivo corrosion behavior of AZ31B Mg alloy with hybrid MWCNTs-PEO/PCL based coatings. Journal of Magnesium and Alloys. 2021;10(11): 3217–3233. https://doi.org/10.1016/j.jma.2021.09.010
Taranu B.-O., Ianasi P., Rus S. F., Bucur A. I. Simultaneous precipitation and electrodeposition of hydroxyapatite coatings at different temperatures on various metal substrates. Coatings. 2022;12(2): 288. https://doi.org/10.3390/coatings12020288
Yuan B., Chen H., Zhao R., … Zhang X. Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg–Ca–Zn–Ag alloy to inhibit bacterial infection and promote bone regeneration. Bioactive Materials. 2022;18: 354–367. https://doi.org/10.1016/j.bioactmat.2022.02.030
Wang P., Liu J., Shen S., … Xi T. In vitro and in vivo studies on two-step alkali-fluoride-treated Mg- Zn-Y-Nd alloy for vascular stent application: Enhance mentin corrosion resistance and biocompatibility. ACS Biomaterials Science and Engineering. 2019;5(7): 3279–3292. https://doi.org/10.1021/acsbiomaterials.9b00140
Van Phuong N., Moon S. Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy. Materials Letters. 2014;122: 341–344. https://doi.org/10.1016/j.matlet.2014.02.065
Zai W., Zhang X., Su Y., Man H.C., Li G., Lian J. Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy. Surface and Coatings Technology. 2020;397: 125919. https://doi.org/10.1016/j.surfcoat.2020.125919
Ishizaki T., Shigematsu I., Saito N. Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy. Surface and Coatings Technology. 2009;203(16): 2288–2291. https://doi.org/10.1016/j.surfcoat.2009.02.026
Su Y., Su Y., Lu Y., Lian J., Li G. Composite microstructure and formation mechanism of calcium phosphate conversion coating on magnesium alloy. Journal of The Electrochemical Society. 2016;163(9): G138. https://doi.org/10.1149/2.0801609jes
JIA X., SONG J., QU X., … PAN F. Effect of cratch on corrosion resistance of calciumphosphate conversioncoated AZ80 magnesium alloy. Transactions of Nonferrous Metals Society of China. 2022;32(1): 147-161. https://doi.org/10.1016/S1003-6326(21)65784-9
Jia X., Song J., Xiao B., … Pan F. Influence of indentation size on the corrosion behaviour of a phosphate conversion coated AZ80 magnesium alloy. Journal of Materials Research and Technology. 2021;14: 1739–1753. https://doi.org/10.1016/j.jmrt.2021.07.091
Ong J. L., Chan D. C. N. Hydroxyapatite and their use as coatings in dental implants: A review. Critical Reviews in Biomedical Engineering. 2000;28(5&6): 667–707. https://doi.org/10.1615/CritRevBiomedEng.v28.i56.10
Dorozhkin S. V. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomaterialia. 2014;10(7): 2919–2934. https://doi.org/10.1016/j.actbio.2014.02.026
Duan G., Yang L., Liao S., … Wang F. Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy. Corrosion Science. 2018;135: 197–206. https://doi.org/10.1016/j.corsci.2018.02.051
Su Y., Guo Y., Huang Z., … Ren L. Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy. Surface and Coatings Technology. 2016;307(part A): 99–108. https://doi.org/10.1016/j.surfcoat.2016.08.065
Sun R. X., Wang P. F., Zhao D. D., Sun Z. Z., Li C. Q., Chen K. Z. An environment-friendly calcium phosphate conversion coating on AZ91D alloy and itscorrosion resistance. Materials and Corrosion. 2015;66(4): 383–386. https://doi.org/10.1002/maco.201307424
Braga J. de O., Santos dos D. M. M., Cotting F., … Nunes E. H. M. Surface modification of magnesium with a novel composite coating for application in bone tissue engineering. Surface and Coatings Technology. 2022;433: 128078. https://doi.org/10.1016/j.surfcoat.2021.128078
Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer’s disease: The integration of the aluminum and amyloid cascade hypotheses. International Journal of Alzheimer’s Disease. 2011;8: 276393. https://doi.org/10.4061/2011/276393
Zhang S., Zhang X., Zhao C., … Bian Y. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia. 2010;6(2): 626–640. https://doi.org/10.1016/j.biomaterials.2003.08.009
Khan F., Panigrahi S. K. Age hardening, fracture behavior and mechanical properties of QE22 Mg alloy. Journal of Magnesium and Alloy. 2015;3(3): 210–217. https://doi.org/10.1016/j.jma.2015.08.002
Rzychoń T., Szala J., Kiełbus A. Microstructure, castability, microstructural stability and mechanical properties of ZRE1 magnesium alloy. Archives of Metallurgy and Materials. 2012;57(1): 245–252. https://doi.org/10.2478/v10172-012-0018-3
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.