Нестехиометрия тугоплавких неорганических соединений c летучим компонентом через призму оригинальных методов физико-химического анализа. Обзор
Аннотация
В основе нестехиометрии тугоплавких соединений с летучим компонентом лежат твердофазные и гетерофазные процессы, а измерения параметров высокотемпературных фазовых превращений часто связаны с ошибками и неточностями. Они возникают по причинам нестабильности как оборудования, так и поведения образца. Для снятия таких ограничений нами были созданы три новых метода физико-химического анализа и на их основе разработан системный подход к исследованию нестехиометрии и внутреннего химического строения дефектных фаз на макро - и микроуровне. Этими методами были высокоскоростной термический анализ, тензиметрический статический метод и стехиографический метод дифференцирующего растворения. Ими измерялись температуры до 2400 °С, давления до 10 атм и нестехиометрия на уровне 10–4 мол. %.
В обзоре демонстрируется работоспособность развитой методологии применительно к тугоплавким соединениям LnS, Ln2S3 (Ln = РЗМ), Yb(Ln)14MnSb11, ZrGeO4, Zr3GeO8, MgO, Mg(Ru)O, а также к легколетучим полихалькогенидам РЗМ и ZnMo(W)O4, которые были в виде порошков, крупных кристаллов, спеков и тонких пленок. Для каждого объекта получено фундаментальное знание о пространственно-временной эволюции соединений, ответственной за происхождение и масштаб нестехиометрии. Это сделано через изучение Т-х, р-Т диаграмм и использование стехиографического метода, определяющего фазовую чистоту, микроструктурные включения и пространственную
химическую неоднородность индивидуальных фаз на микроуровне.
Полученный комплекс новых количественных термодинамических и физико-химических данных о нестехиометрии этих соединений стал основой целевого выбора состава и грамотного проведения процессов кристаллизации, спекания и химического осаждения тонких пленок для реализации направленного синтеза их как материалов с управляемыми свойствами. Обзор написан по приглашению д. х. н., проф., член-корр. Магомед Бабанлы, редактора специального выпуска журнала «Конденсированные среды и межфазные границы» по теме «Физико-химический анализ в материаловедении»
Скачивания
Литература
Gibner Ja. I., Vasilyeva I .G. Device for determining the temperatures for phase formations. Patent SU: No. 1806358. Publ. 9.10.1992.
Gibner Ja. I., Vasilyeva I. G. Rapid heating in high-temperature thermomicroscopic analysis. Journal of Thermal Analysis and Calorimetry. 1998;53: 151–160. https://doi.org/10.1023/a:1010115620439
Gibner Ja. I., Vasilyeva I. G. Modified tensimetric set up for the vapor pressure testing*. Industrial Laboratory. 1990;56:(7) 45–47. (In Russ.)
Malakhov V. V., Vasilyeva I. G. Stoichiography and chemical methods of phase analysis of multielement multiphase compounds and materials. Russian Chemical Reviews. 2008;77(4): 370–392. https://doi.org/10.1070/RC2008v077n04ABEH003737
Malakhov V. V., Vasilyeva I. G. Stoichiography: evolution of solid-phase reactions. New principles of research, preparation and characterization of functional materials (book)*. Novosibirsk: Siberian Branch of Russian Academy of Sciences; 2023. 251 с. (In Russ.)
Vasilyeva I. G., Nikolaev R. E. Non-stoichiometry and point native defects in non-oxide nonlinear optical large single crystals: advantages and problems. CrEngComm. 2019;21: 5890–5897. https://doi.org/10.1039/c9ce01148j
Vasilyeva I. G. Nikolaev R. E. High-temperature solid–vapor and liquid–vapor transitions in binary and ternary chalcogenides La2S3, MoS2, Mo2S3 and LiInSe2. Journal of Alloys and Compounds. 2008;452: 89–93. https://doi.org/10.1016/j.jallcom.2007.01.175
Nikolaev R. E. Vasilyeva I. G. Vapor pressure determination for solid and liquid La2S3 using boiling points. Inorganic Materials. 2008;44(12): 1367–1371. https://doi.org/10.1134/s0020168508120194
Gorbunova L. G., Gibner Ja. I., Vasilyeva I. G. The phase diagram of the Nd-S system in the 50-50 at. % S area. Russian Journal of Inorganic Chemistry. 1983;29: 222–225.
Bien T. N., Hirai S., Vasilyeva I., Nikolaev R., Sekine C., Atsunori K Study of non-stoichiometric GdSx (0.68 ≤ x ≤ 1.2) processed by reaction sintering. Journal of Alloys and Compounds. 2020;831: 15469. https://doi.org/10.1016/j.jallcom.2020.154691
Bien T. N., Hirai S., Vasilyeva I., … Kawamura Y. Composition and microstructure of holmium monosulfide compacts processed by reaction sintering. Journal of Alloys and Compounds. 2021;859: 157872. https://doi.org/10.1016/j.jallcom.2020.157872
Abdusalyamova M., Vasilyeva I. The phase equilibrium and intermediate phases in the Eu – Sb system. Journal of Solid State Chemistry. 2011;184: 2751–2755. https://doi.org/10.1016/j.jssc.2011.08.018
Abdusalyamova M. N., Vasilyeva I. G., Kauzlarich S. The phase equilibrium in Yb-Mn-Sb and Eu-Mn-Sb systems. SOP Transactions on Physical Chemistry. 2015;2: 1–9. https://doi.org/10.15764/pche.2015.01001
Vasilyeva I. G., Nikolaev R. E., Abdusalyamova M., Kauzlarich S. Thermochemistry study and improved thermal stability of Yb14MnSb alloyed by Ln3+ (La-Lu). Journal of Materials Chemistry C. 2016;4: 3342–3348. https://doi.org/10.1039/c6tc00178e
Vasilyeva I. G., Abdusalyamova M. N., Makhudov F., Eshov B., Kauzlarich S. Thermal air-oxidezed coating on Yb14-xRExMnSb11 ceramics. The role of rare earth dopants. Journal of Thermal Analysis and Calorimetry. 2019;136: 541–549. https://doi.org/10.1007/s10973-018-7659-z
Utkin A., Baklanova N., Vasilyeva I. High temperature behavior of zirconium germinates. Journal of Solid State Chemistry. 2013;201: 256–261. https://doi.org/10.1016/j.jssc.2013.03.010
Vasilyeva I. G., Nikolaev R. E., Nasonov S. G., Kurchev A. V., Shlegel V. N. Peculiarities of the crystallization process and growth of pure nonstoichiometric ZnMoO4 single crystals and those doped with WO3. CrystEngComm. 2019;21: 5890-5897. https://doi.org/10.1039/c9ce01148j
Flahauth J., Guittard M., Patrie M. Polysulfides of rare earth metals. Bulletin de la Société Chimique de France. 1959;10-12: 1917–1920.
Yarembash E. I., Eliseev A. A. Chalcogenides of rare earth elements*. Moscow: Nauka Publ., 1975, 258 p. (In Russ.)
Loginova E. M., Grisik А. А., Ponomarev N. M., Eliseev A. A. The phase Р-Т-х diagram of the La-S system in the La2S3-LaS2 area. Inorganic Materials. 1975;11: 749–751. (In Russ.)
Eliseev A. A., Grizik A. A. Rare earth semiconductors*. Leningrad: Nauka Publ.; 1977. p. 146-177. (In Russ.)
Gorbunova L. G., Vasilyeva I. G. Stepped dissociation of the Pr-disulfide*. Izvestija SO AN SSSR. Serija himicheskih nauk. 1986;5: 77-81. (In Russ.)
Vasilyeva I. G., Belyaeva E. I. Thermodynamic study of the SmS2-SmS1.5 system. Journal of Solid State Chemistry. 1999;142: 261–265. https://doi.org/10.1006/jssc.1998.7802
Vasilyeva I. G., Belaya S. V. Sulfur nonstoichiometry of PrS2: a series of new sulfur-deficient phases. Journal of Solid State Chemistry. 1999;146: 211–216. https://doi.org/10.1006/jssc.1999.8335
Tamazyan R., Arnold H., Molchanov V., Kusmicheva G., Vasilyeva I. The crystal structure and twinning of rare disulfide PrS2. Zeitschrift für Kristallographie – Crystalline Materials. 2000;215: 272–277. https://doi.org/10.1524/zkri.2000.215.5.272
Tamazyan R., Arnold H., Molchanov V., Kusmicheva G., Vasilyeva I. The crystal structure and twinning of SmS1.9. Zeitschrift für Kristallographie – Crystalline Materials. 2000;215: 346–351. https://doi.org/10.1524/zkri.2000.215.6.346
Vasilyeva I. G. Polysulfides. In: Handbook on the physics and chemistry of rare earths. K. Gschneider, I. Eyring (eds.). 2001;32: 567–609. https://doi.org/10.1016/s0168-1273(01)32008-1
Podberezskaya N., Magarill C., Pervuchina N., Vasilyeva I., Borisov S. Crystallochemical aspects of the structural similarity of rare earth polychalcogenides LnX2−x (x = 0–0.25) Journal of Structural Chemistry. 1996; 37: 936–985. https://doi.org/10.1007/bf02439082
Podberezskaya N. V., Pervukhina N. V., Belaya S. V., Vasilieva I. G., Borisov S. V. Crystal structures of two new holmium polysulfides in the series of rare-earth polychalcogenides. Journal of Structural Chemistry. 2001;42(4): 617–627. https://doi.org/10.1023/ a:1013198027339
Vasilyeva I., Shilkina T., Podberezskaya N., Naumov D. Tensimetric and structural study of dysprosium polysulfides. Russian Journal of Inorganic Chemistry. 1999;44(2): 153–156. Available at: https://www.elibrary.ru/item.asp?id=13328511
Vasilyeva I., Podberezskaya N., Naumov D., Pervukhina N., Ikorskii V., Borisov S. Growth and structure of lanthanium polysulfide crystals. Journal of Structural Chemistry. 2003;44: 154–162. https://doi.org/10.1023/a:1024949418041
Vasilyeva I. G., Nikolaev R. E. The La2S3-LaS2 system: thermodynamic and kinetic study. Journal of Solid State Chemistry. 2010;183: 1747–1751. https://doi.org/10.1016/j.jssc.2010.05.026
Vasilyeva I. G. Phase equilibrium and ps-T-X- diagrams of the systems Ln2S3-LnS2 (Ln = La, Pr, Nd, Sm-Er). Russian Journal of Physical Chemistry. 2006;80: 2068–2073. https://doi.org/10.1134/s003602440611029x
Podberezskaya N., Naumov N., Vasilyeva I., Pervuchina N., Magarill C., Borisov S. Structure of dysprosium polysulfide DyS1.83(Dy6S11). according to X-ray diffraction analysis Journal of Structural Chemistry. 1998;39: 872-884. https://doi.org/10.1007/bf02903544
Graf Ch., Vasilyeva I., Doert Th. Six new rare earth polysulfide compounds with ZrSSi superstructure: LnS1.85(2) (Ln = Y, Gd – Er). Technische Universität Dresden: Gemainsame Jahrestagung der Deutschen Gesellschaft fur Kristallographie und der Deutschen fur Kristallzuchtung, Universitat Bremen, 5–9 Marz, 2007.
Doert Th., Graf Ch., Vasilyeva I., Schnelle W. Structural frustration and occupational disorder: the rare earth metal polysulfides Tb8S14.8, Dy8S14.8, Ho8S14.8 , Y8S14.8. Inorganic Chemistry. 2012;51: 282–289. https://doi.org/10.1021/ic201639f
Zelenina L., Chusova T., Vasilyeva I. Thermodynamic investigation of the phase formation processes in the systems LnSe2–LnSe1.5 (Ln = La, Ce, Pr, Nd). The Journal of Chemical Thermodynamics. 2013;57: 101–107. https://doi.org/10.1016/j.jct.2012.08.005
Doert Th., Graf Ch., Schmidt P., Vasilyeva I., Simon P., Carrillo-Cabrera W. The PrSe2-PrSe1.5 system: studies of the phase relationships and the modulated crystal structure of PrSe1.85. Journal of Solid State Chemistry. 2007;180: 496-509. https://doi.org/10.1016/j.jssc.2006.10.030
Chusova T. P., Zelenina L. N., Vasilyeva I. G., Graf Ch., Doert Th. Thermodynamic study of the system PrSe2-PrSe1.5 and GdSe1.875-GdSe1.50. Journal of Alloys and Compounds. 2008;452: 94–98. https://doi.org/10.1016/j.jallcom.2006.12.162
Zelenina L. N., Chusova T. P., Vasilyeva I. G. Thermodynamic properties of Sm-and Gd-polyselenides. The Journal of Chemical Thermodynamics. 2015;90: 122–128. https://doi.org/10.1016/j.jct.2015.06.031
Vasilyeva I. G., Logvinenko V. A. Contribution of chemical methods in the study of nanostructures of ultrafine and amorphous materials. Solid State Phenomena. 2016;257: 237–240. https://doi.org/10.4028/www.scientific.net/ssp.257.237
Vasilyeva I., Ayupov B., Vlasov A., Malakhov V., Macaudiere P., Maestro P. Color and chemical heterogeneities of g-[Na]-Ce2S3 solid solutions. Journal of Alloys and Compounds. 1998;268: 72–77. https://doi.org/10.1016/s0925-8388(97)00580-x
Vasilyeva I. G., Malakhov V. V., Vlasov A. A., Predtechensky M. R. New method of microphase and chemical analysis as applied to the YBaCuO thin films. Thin Films. 1997;292: 85–90. https://doi.org/10.1016/s0040-6090(96)08945-6
Vasilyeva I., Ivanova E., Vlasov A., Malakhov V. Phase composition of mixed ZnS-EuS thin films grown by metal organic chemical vapor deposition. Materials Research Bulletin. 2003;38: 409–415. https://doi.org/10.1016/s0025-5408(02)01070-x
Vasilyeva I. G., Vikulova E. S., Pochtar A. A., Morozova N. B., Igumenov I. K. Invisible surface oxygen vacancies in a thin MgO film: impacts on the chemical activity and secondary electron emission. Inorganic Chemistry. 2020;59: 17999–18009. https://doi.org/10.1021/acs.inorgchem.0c02351
Vasilyeva I. G., Vikulova E.S., Pochtar A. A., Morozova N. B. Mixed films based on MgO for secondary electron emission application general trends and MOCVD Prospects. Coating. 2021;11: 176–194. https://doi.org/10.3390/coatings11020176
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.