Системы из фторидов натрия и редкоземельных элементов. Обзор

  • Павел Павлович Федоров ФГБУН Федеральный исследовательский центр «Институт общей физики им. А. М. Прохорова Российской академии наук», ул. Вавилова, 38, Москва 119991, Российская Федерация https://orcid.org/0000-0002-2918-3926
  • Ирина Игоревна Бучинская ФГУ «Федеральный научно-исследовательский центр «Кристаллография и фотоника» Российской академии наук, Ленинский проспект, 59, Москва 119333 Российская Федерация https://orcid.org/0000-0002-4658-5695
Ключевые слова: фторид натрия, фториды редкоземельных элементов, фазовые диаграммы, флюорит, гагаринит, морфотропия

Аннотация

Системы NaF–RF3 из фторидов натрия и трифторидов редкоземельных элементов являются источниками многих функциональных материалов. Проанализированы данные по фазообразованию и фазовым равновесиям в этих системах. Рассмотрены полиморфизм и морфоторопия фторидов РЗЭ с учетом влияния пирогидролиза. Представлен сводный ряд фазовых диаграмм NaF–RF3 и табулированы координаты нонвариантных равновесий. Данные работ Тома с сотрудниками шестидесятых годов ХХ века представляют в настоящее время только исторический интерес. В этих системах образуются фазы переменного состава a-Na0.5–xR0.5+xF2+2x (cubic, R = Pr-Lu, Y) и b-Na3xR2–xF6 (hexagonal, R = La-Lu,Y) со структурами флюорита и гагаринита соответственно. Кроме того, выявлены твердые растворы на основе трифторидов РЗЭ со структурой LaF3 –тисонита (R = La-Gd) и бертоллидная фаза такой структуры в системе с TbF3. Приведены данные о концентрационной зависимости параметров решетки флюоритовых фаз. Высокотемпературные a-фазы с максимумами на кривых плавления позволяют выращивать монокристаллы из расплава. Наблюдается сложная картина упорядочения этих фаз при понижении температуры. Низкотемпературные синтезы промежуточных фаз в этих системах приводят, в соответствии с правилом ступеней Оствальда, к первоначальному образованию неравновесных фаз флюоритовой структуры, обычно обозначаемых как «a-NaRF4», которые затем сменяются равновесными низкотемпературными гексагональными фазами «b-NaRF4». Гексагональная фаза в системе NaF–YF3, легированная иттербием и эрбием («b-NaYF4:Yb,Er», является одним наиболее эффек-
тивных известных ап-конверсионных люминофоров

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Павел Павлович Федоров, ФГБУН Федеральный исследовательский центр «Институт общей физики им. А. М. Прохорова Российской академии наук», ул. Вавилова, 38, Москва 119991, Российская Федерация

д. х. н., профессор, гл. н. с. Института общей физики им. А. М. Прохорова Российской
академии наук (Москва, Российская Федерация)

Ирина Игоревна Бучинская, ФГУ «Федеральный научно-исследовательский центр «Кристаллография и фотоника» Российской академии наук, Ленинский проспект, 59, Москва 119333 Российская Федерация

к. х. н., с. н. с., Институт кристаллографии им. А. В. Шубникова Курчатовского
комплекса кристаллографии и фотоники НИЦ «Курчатовский институт», (Москва, Российская Федерация)

Литература

Fedorov P. P. Systems of alcali and rare-earth metal fluorides. Russian Journal of Inorganic Chemistry. 1999;44(11): 1703–1727. Available at: https://elibrary.ru/item.asp?id=13323144

Fedorov Р. P., Luginina A. A., Kuznetsov S. V., Osiko V. V. Nanofluorides. Journal of Fluorine Chemistry 2011;132(12): 1012-1039. https://doi.org/10.1016/j.jfluchem.2011.06.025

Li J., Xia D., Gao M., Jiang L., Zhao S., Li G. Invisible luminescent inks and luminescent films based on lanthanides for anti-counterfeiting. Inorganica Chimica Acta. 2021;526: 120541. https://doi.org/10.1016/j.ica.2021.120541

Karimov D. N., Demina P. A., Koshelev A. V., … Panchenko V. Ya. Upconversion nanoparticles: synthesis, photoluminescence properties, and applications. Nanotechnologies in Russia. 2020;15: 655–678. https://doi.org/10.1134/s1995078020060117

Richards B. S., Hudry D., Busko D., Turshatov A., Howard I. A. Photon upconversion for photovoltaics and photocatalysis: a critical review. Chemical Reviews. 2021;121: 9165–9195. https://doi.org/10.1021/acs.chemrev.1c00034

Joseph R. E., Hudry D., Busko D., … Howard I. A. Bright constant color upconversion based on dual 980 and 1550 nm excitation of SrF2:Yb3+, Er3+ and b-NaYF4:Yb3+, Er3+ micropowders – considerations for persistence of vision displays. Optical Materials. 2021;111: 110598. https://doi.org/10.1016/j.optmat.2020.110598

Ansari A. A., Parchur A. K., Nazeeruddin M., Tavakoli M. M. Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coordination chemistry reviews. 2021;444: 214040. https://doi.org/10.1016/j.ccr.2021.214040

Singh R., Madirov E., Busko D., … Turshatov A. Harvesting sub-bandgap photons via up-conversion for perovskite solar cells. ACS Appl. Mater. Interfaces. 2021;13: 54874–54883. https://doi.org/10.1021/acsami.1c13477

Woidasky J., Sander I., Schau A., … Lang-Koetz C. Inorganic fluorescent marker materials for identification of post-consumer plastic packaging. Resources, Conservation and Recycling. 2020;161: 104976. https://doi.org/10.1016/j.resconrec.2020.104976

Wolfbeis O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews. 2015;44: 4743–4768. https://doi.org/10.1039/c4cs00392f

Ansari A. A., Parchur A. K., Thora N. D., Chen G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coordination Chemistry Reviews. 2021;440: 213971. https://doi.org/10.1016/j.ccr.2021.213971

Li H., Wang X., Ohulchanskyy T. Y., Chen G. Lanthanide-doped near-infrared nanoparticles for biophotonics. Advanced Materials. 2021;33(6): 2000678. https://doi.org/10.1002/adma.202000678

Jaque D., Vetrone F. Luminescence nanothermometry. Nanoscale. 2012;4: 4301–4326. https://doi.org/10.1039/C2NR30764B

Ovsyankin V. V., Feofilov P. P. Mechanism of summation of electronic excitation in activated crystals. JETP Letters. 1966;3: 494–497. Available at: http://jetpletters.ru/ps/1621/article_24809.shtml

Auzel F. Upconversion and anti-stokes process with f and d ions in solids. Chemical Reviews. 2004;104(1): 139–174. https://doi.org/10.1021/cr020357g

Menyuk N., Dwight K., Pierce J.W. NaYF4:Yb, Er – an efficient upconversion phosphor. Applied Physics Letters. 1972;21(4): 159–161. https://doi.org/10.1063/1.1654325

Kano T., Yamamoto H., Otomo Y. NaLnF4:Yb3+,Er3+ (Ln: Y, Gd, La): efficient green-emitting infrared-excited phosphors. J. Electrochemical Society. 1972;119(11): 1561–1564.

Li Z., Zhang Y., Jiang S. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Advanced Materials. 2008;20(24): 4765–4769. https://doi.org/10.1002/adma.200801056

Kaiser M., Würth C., Kraft M., Hyppänen I., Soukka T., Resch-Genger U. Power-dependent upconversion quantum yield of NaYF4:Yb3+, Er3+ nano- and micrometer-sized particles – measurements and simulations. Nanoscale. 2017;9(28): 10051–10058. https://doi.org/10.1039/C7NR02449E

Fedorov P. P., Kuznetsov S. V., Mayakova M. N., … Osiko V.V. Coprecipitation from aqueous solutions to prepare binary fluorides. Russian Journal of Inorganic Chemistry. 2011;56(10): 1525–1531. https://doi.org/10.1134/S003602361110007X.

Fedorov P. P., Alexandrov A. A. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. Journal of Fluorine Chemistry. 2019;227: 109374. https://doi.org/10.1016/j.jfluchem.2019.109374

Guricova M., Pinc J., Malincik J., Rak J., Kuchar M., Bartunek V. Rare earth nanofluorides: synthesis using ionic liquids. Reviews in Inorganic Chemistry. 2019;39(2): 77–90. https://doi.org/10.1515/revic-2018-0016

Fedorov P. P., Luginina A. A., Popov A. I. Transparent оxyfluoride glass сeramics. Journal of Fluorine Chemistry. 2015;172: 22–50. https://doi.org/10.1016/j.jfluchem.2015.01.009

Xie J., Gao Z., Zhou E., … Huang W. Insighs into the growth principles of REF (RE = La-Lu, Y) nanocrystals: hexagonal and/or orthorhombic. Nanoscale. 2017;9: 15974–15981. https://doi.org/10.1039/C7NR06210A

You F., Huang S., Shi Q. Hydrothermal synthesis of mixed rare earth-alkali metal or ammonium fluorides. Journal of Rare Earths. 2010;28(5): 676–679. https://doi.org/10.1016/s1002-0721(09)60177-0

Kemnitz E., Mahn S., Krahl T. Nano metal fluorides: small particles with great properties. ChemTexts. 2020;6: 19 (27 pp.). https://doi.org/10.1007/s40828-020-00115-w

Gulina L. B., Tolstoy V. P., Murin I. V. Crystallization of new inorganic fluoride nanomaterials at soft chemistry conditions and their application prospects. Russian Journal of Inorganic Chemistry. 2024;69(3): 1–12. https://doi.org/10.1134/S0036023623603070

Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Zeitschrift für Physikalische Chemie. 1897;22: 289–330. https://doi.org/10.1515/zpch-1897-2233

Threlfall T. Structural and thermodynamics explanation of Ostwald’s rule. Organic Process Research and Development. 2003;7: 1017–1027. https://doi.org/10.1021/op030026l

Fedorov P. P., Kuznetsov S. V., Voronov V. V., Yarotskaya I. V., Arbenina V. V. Soft chemical synthesis of NaYF4 nanopowders. Russian Journal of Inorganic Chemistry. 2008;53(11): 1681–1685. https://doi.org/10.1134/s0036023608110028

Yoshikawa A., Chani V. Growth of optical crystals by the micro-pulling-down method. MRS Bulletin. 2009;34: 266–270. https://doi.org/10.1557/mrs2009.77

Shu J., Damiano E., Sottile A., Zhang Z., Tonelli M. Growth by the μ-PD method and visible laser operation of a single-crystal fiber of Pr3+:KY3F10. Crystals. 2017;(7): 200. https://doi.org/10.3390/cryst7070200

Sobolev B. P. The rare earth trifluorides. P.2. Introduction to materials science of multicomponent metal fluoride crystals. Barcelona: Institut d’estudis Catalans; 2001. 460 p.

Fedorov P. P., Osiko V. V. Crystal growth of fluorides. In: Bulk crystal growth of electronic, optical and optoelectronic materials. P. Capper (ed.). John Wiley & Son, Ltd. Chichester, UK; 2005. 339–356. https://doi.org/10.1002/9780470012086.ch11

Moncorge R., Braud A., Camy P., Doualan J. L. Fluoride laser crystals. In: Handbook on solid-state lasers: materials, systems and applications. Book Series: Woodhead publishing series in electronic and optical materials. B. Denker and E. Shklovsky (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Limited, UK; 2013. 82–109.

Van der Meer J. P. M., Konings R. J. M., Jacobs M. H. G., Oonk H. A. G. Modeling and calculation of the LiF-NaF-MF3 (M = La, Ce, Pu) phase diagrams. Chemistry of Materials. 2006;18: 510–517. https://doi.org/10.1021/cm051531v

Bergmann H. Gmelin handbuch der anorganischen chemie. B. 39. Seltenerdelemente C.3. Fluoride, oxifluoride und zugehogige alkalidoppelverbindunge. Springer; 1976. 439 p.

Sobolev B. P. The rare earth trifluorides. Part I. The high temperature chemistry of the rare earth trifluorides. Barcelona: Institut d’Estudis Catalans; 2000. 520 p.

Spedding F. H., Henderson D. C. High-temperature heat contents and related thermodynamic functions of seven trifluorides of the rare earths: Y, La, Pr, Nd, Gd, Ho, and Lu. The Journal of Chemical Physics. 1971;54: 2476–2483. https://doi.org/10.1063/1.1675202

Spedding F. H., Beaudry B. J., Henderson D. C., Moorman J. High-temperature enthalpies and related thermodynamic functions of the trifluorides of Sc, Ce, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb. The Journal of Chemical Physics. 1974;60(4): 1578–1588. https://doi.org/10.1063/1.1681233

Sobolev B. P., Fedorov P. P. Hexagonal YF3 structure type and high-temperature modifications of rare-earth trifluorides isostructural with YF3. Soviet Physics. Crystallography. 1973;18(3): 392. (1 p.)

Sobolev B. P., Garashina L. S., Fedorov P. P., Tkachenko N. L., Seiranyan K. B. Polymorphism and crystallographic properties of yttrium and rare-earth trifluorides. Soviet Physics. Crystallography. 1973:18(4): 473–476.

Sobolev B. P., Fedorov P. P., Seiranyan K. B., Tkachenko N. L. On the problem of polymorphism and fusion of lanthanide trifluorides. II. Interaction of LnF3 with MF2 (M=Ca,Sr,Ba). Change in structural type in the LnF3 series and thermal characteristics. Journal of Solid State Chemistry. 1976;17(1/2): 201–212. https://doi.org/10.1016/0022-4596(76)90221-8

Greis O., Cader M. S. R. Polymorphism of high purity rare earth trifluorides. Thermochimica Acta. 1985;87(1): 145–150. https://doi.org/10.1016/0040-6031(85)85329-6

Fedorov P. P., Sobolev B. P. Morphotropic transitions in the rare-earth trifluoride series. Crystallography Reports. 1995;40(2): 284–290.

Stankus S. S., Khairulin R. A., Tyagel’sky P. V. Thermal properties of rare-earth fluorides in solid and liquid states. High Temperatures-High Pressures. 1995/1996; 27/28(5): 493–498. https://doi.org/10.1068/htrt04

Sobolev B. P. High-temperature chemistry of Y, La and lanthanide trifluorides in RF3-R’F3 systems. Part 2. Phase diagrams of the studied systems. Journal of Solid State Chemistry. 2021;298: 122078. https://doi.org/10.1016/j.jssc.2021.122078

Mansmann M. Die Kristallstruktur von lanthantrifluorid. Zeitschrift für Kristallographie. 1965;122: 375–398. https://doi.org/10.1524/zkri.1965.122.5-6.375

Bolotina N. B., Chernaya T. S., Verin I. A., Khrykina O. N., Sobolev B. P. Dimorphism of RF3 (R = La-Nd) crystals based on the data of X-ray diffraction studies. Crystallography Reports. 2016;61: 29–34. https://doi.org/10.1134/s1063774516010041

Fedorov P. P., Sorokin N. I. Stabilization of the a-YF3 structure type by isomorphous substitutions. Inorganic Materials. 2017;53(12): 1307–1311. https://doi.org/10.1134/S0020168517120044

Sui Z., Wu J., Wang X., … Zhang Z. Cyclic phase transition from hexagonal to orthorhombic then back to hexagonal of EuF3 while loading uniaxial pressure and under high temperature. The Journal of Physical Chemistry C. 2016;120: 18780–18787. https://doi.org/10.1021/acs.jpcc.6b05907

Kuznetzov S. V., Osiko V. V., Tkatchenko E. A., Fedorov P. P. Inorganic nanofluorides and related nanocomposites. Russian Chemical Reviews. 2006;75(12): 1065–1082. https://doi.org/10.1070/RC2006v075n12ABEH003637

Banks C. V., Burke K. E., O’Laughlin J. W. The determination of fluorine in rare earth fluorides by high temperature hydrolysis. Analytica Chimica Acta. 1958;19: 239–243. https://doi.org/10.1016/S0003-2670(00)88149-0

Warf J. C., Cline W. C., Tevebaugh R. D. Pyrohydrolysis in the determination of fluorides and other halides. Analytical Chemistry. 1954;26: 342–346. https://doi.org/10.1021/ac60086a019

Yonezawa S., Jae-Ho K., Takashima M. Pyrohydrolysis of rare-earth trifluorides in moist air. Solid State Sciences. 2002;4: 1481–1485. https://doi.org/10.1016/s1293-2558(02)00039-0

Fedorov P. P., Mayakova M. N., Kuznetsov S. V., … Iskhakova L. D. Coprecipitation of barium–bismuth fluorides from aqueous solutions: nanochemical effects. Nanotechnologies in Russia. 2011;6(3-4): 203–210. https://doi.org/10.1134/S1995078011020078

Thoma R. E., Brunton G. D. Equilibrium dimorphism of the lanthanide trifluorides. Inorganic Chemistry. 1966;5: 1937–1939. https://doi.org/10.1021/ic50045a022

Sobolev B. P., Fedorov P. P., Steynberg D. B., Sinitsyn B. V., Shakhkalanian G. S On the problem of polymorphism and fusion of lanthanide trifluorides. I. Influence of oxygen on phase transition temperatures. Journal of Solid State Chemistry. 1976;17(1/2): 191–199. https://doi.org/10.1016/0022-4596(76)90220-6

Fedorov P. P. Comment on the paper «The phase diagram YF3 - GdF3» by D. Klimm, I. M. Ranieri, R. Bertram, and S. L. Baldochi. Materials Research Bulletin. 2012;47(9): 2700–2701. https://doi.org/10.1016/j.materresbull. 2012.05.059

Fedorov P. P., Mayakova M. N. Comment on the article “BiF3:Ho3+ system for upconversion of 2-mcm laser radiation into visible emission” of authors A. P. Savikin, A. S. Egorov, A. V. Budruev, and I. A. Grishin, Russ. J. Appl. Chem. 89 (2), 337–340 (2016). Russian Journal of Applied Chemistry. 2018;91(10): 1729-1731. https://doi.org/10.1134/S1070427218100221

Martínez-Esaín J., Ros J., Faraudo J., Ricart S., Yáñez R. Tailoring the synthesis of LnF3 (Ln= La-Lu and Y) nanocrystals via mechanistic study of the coprecipitation method. Langmuir. 2018;34(22): 6443–6453. https://doi.org/10.1021/acs.langmuir.7b03454

Bendeliani N. A. Phase transitions of transition metal trifluorides at high pressure*. Inorganic Materials. 1984;20(10): 1726–1729. (In Russ.)

Thoma R. E.; Hebert G. M., Insley H., Weaver C. F. Phase equilibria in the system sodium fluoride-yttrium fluoride. Inorganic Chemistry. 1963;2: 1005–1012. https://doi.org/10.1021/ic50009a030

Thoma R. E., Insley H., Hebert G. M. The sodium fluoride-lanthanide trifluoride systems. Inorganic Chemistry. 1966;5: 1222–1229. https://doi.org/10.1021/ic50041a032

Thoma R. E. Binary systems of the lanthanide trifluoorides with the alkali fluorides. Revie de Chimie Minerale. 1975;10(1-2): 363–381.

Barton C. J., Redman J. D., Strehlow R. A. Phase equilibria in the systems NaF-PuF3 and NaF-CeF3. Journal of Inorganic and Nuclear Chemistry. 1961;20: 45–52. https://doi.org/10.1016/0022-1902(61)80456-9

Roy D. M., Roy R. Controlled massively defective crystalline solutions with the fluorite structure. Journal of The Electrochemical Society. 1964;111(4): 421–429. https://doi.org/10.1149/1.2426145

Fedorov P. P., Sobolev B. P., Belov S. F. Fusibility diagram of the system NaF-YF3, and the cross-section Na0.4Y0.6F2.2-YOF. Inorganic Materials. 1979;15: 640–643.

Fedorov P. P., Rappo A. V., Spiridonov F. M., Sobolev B. P. NaF-YbF3 system*. Russian Journal of Inorganic Chemistry. 1983;28(3): 744–748. (In Russ.)

Pavlova L. N., Fedorov P. P., Ol’khovaya L. A., Ikrami D. D., Alexsandrov V. B., Sobolev B. P. The NaF- GdF3 system*. Russian Journal of Inorganic Chemistry. 1989;34(7): 1234–1235. (In Russ.)

Fedorov P. P., Pavlova L. N., Ol’khovaya L. A., Ikrami D. D., Sobolev B. P. The NaF - HoF3 system*. Russian Journal of Inorganic Chemistry. 1990;35(11): 1676–1677. (In Russ.)

Fedorov P. P., Bondareva O. S., Buchinskaya I. I., Vistin’L. L., Sobolev B. P. A new form of sodium tetrafluorolutetate NaLuF4*. Russian Journal of Inorganic Chemistry. 1992;37(2): 125–126. (In Russ.)

Fedorov P. P., Buchinskaya I. I., Bondareva O. S., Vistin’L. L., Bystrova A. A., Sobolev B. P. Phase diagrams of the NaF-RF3 (R = Tb, Dy, Er) systems*. Russian Journal of Inorganic Chemistry. 1996;41(10): 1715–1719. (In Russ.)

Fedorov P. P., Buchinskaya I. I., Bondareva O. S., Vistin L. L., Sobolev B. P. Phase diagrams of the NaF-RF3 (R = Tm, Yb, Lu) systems*. Russian Journal of Inorganic Chemistry. 1996;41(11): 1920–1924. (In Russ.)

Fedorov P. P., Buchinskaya I. I., Bondareva O. S. … Sobolev B.P. Phase diagrams of the NaF-RF3 (R = La, Ce, Pr, Nd, Sm) systems. Russian Journal of Inorganic Chemistry. 2000;45(6): 949–952.

Fedorov P. P., Alexandrov V. B., Bondareva O. S., Buchinskaya I. I., Val’covskii M. D., Sobolev B. P. Concentration dependences of the unit-cell parameters of nonstoichiometric fluorite-type phases Na0.5–xR0.5+xF2+2x (R = rare-earth elements). Crystallography Reports. 2001;46: 239–245. http://doi.org/10.1134/1.1358401

Fedorov P. P., Kuznetsov S. V., Osiko V. V. Elaboration of nanofluorides and ceramics for optical and laser applications. In: Photonic & Electronic Properties of Fluoride Materials. Tressaud A., Poeppelmeier K. (eds.). Elsevier; 2016:7-31. 513 p. http://doi.org/10.1016/B978-0-12-801639-8.00002-7

Fedorov P. P. Comment on “A Mechanistic Understanding of NonClassical Crystal Growth in Hydrothermally Synthezied Sodium Yttrium Fluoride Nanowires”. Chemistry of Materials. 2021;33(10): 3859–3861. https://doi.org/10.1021/acs.chemmater.0c01515

Olkhovaya L. A., Fedorov P. P., Ikrami D. D., Sobolev B. P. Phase diagrams of MgF2–(Y,Ln)F3 systems. Journal of Thermal Analysis. 1979;15: 355–360. https://doi.org/10.1007/BF01903660

Sobolev B. P., Fedorov P. P. Phase diagramms of the CaF2–(Y,Ln)F3 systems. I. Experimental. Journal of the Less Common Metals. 1978;60: 33–46. https://doi.org/10.1016/0022-5088(78)90087-5

Sobolev B. P., Seiranian K. B., Garashina L. S., Fedorov P. P. Phase diagrams of the SrF2–(Y,Ln)F3 systems part I.—X-ray characteristics of phases. Journal of Solid State Chemistry. 1979;28(1): 51–58. https://doi.org/10.1016/0022-4596(79)90057-4

Sobolev B. P., Seiranian K. B., Phase diagrams of the SrF2– (Y,Ln)F3 systems. II. Fusibility of systems and thermal behavior of phases. Journal of Solid State Chemistry. 1981;39(2): 337–344. https://doi.org/10.1016/0022-4596(81)90268-1

Sobolev B. P., Tkachenko N. L. Phase Diagrams of BaF2–(Y,Ln)F3 Systems. Journal of the Less Common Metals. 1982;85: 155. https://doi.org/10.1016/0022-5088(82)90067-4

Cantor S., Ward W.T. Freezing point depression in sodium fluoride. 4. Effect of trivalent fluorides. The Journal of Physical Chemistry. 1963;67(12): 2766–2769. https://doi.org/10.1021/j100806a061

Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976;32: 751–767. https://doi.org/10.1107/s0567739476001551

Bard A. B., Zue X., Xia X., … Pauzauskie P. J. A mechanistic understanding of nonclassical crystal growth in hydrothermally synthesized sodium yttrium fluoride nanowires. Chemistry of Materials 2020;32: 2753−2763. https://doi.org/10.1021/acs.chemmater.9b04076

Fedorov P. P., Mayakova M. N., Voronov V. V., Baranchikov A. E., Ivanov V. K. Preparation of “NaRF4” phases from the sodium nitrate melt. Journal of Fluorine Chemistry. 2019;218: 69–75. https://doi.org/10.1016/j.jfluchem. 2018.11.018

Grzechnik A., Bouvier P., Crichton W.A., Farina L., Kohler J. Metastable NaYF4 fluorite at high pressures and high temperatures. Solid State Sciences. 2002;4: 895–899. https://doi.org/10.1016/s1293-2558(02)01353-5

Tkachuk A. M., Ivanova S. E., Joubert M. F., Guyot Y. Spectroscopic study of double sodium-yttrium fluoride crystals doped with erbium Na0.4Y0.6F2.2:Er3+. Optics and Spectroscopy. 2005;99: 932–949. https://doi.org/10.1134/1.2149418

Bezhanov V. A., Mikhailin V. V., Chernov S. P., Karimov D. N. UV and VUV spectroscopic study of Na0.4Y0.6F2.2 crystals doped with rare-earth ions. Optics and Spectroscopy. 2006;101: 571–581. https://doi.org/10.1134/S0030400X06100122

Karimov D. N., Sobolev B. P., Ivanov I. A., Kanorsky S. I., Masalov A. V. Growth and magneto-optical properties of Na0.37Tb0.63F2.26 cubic single crystal. Crystallography Reports. 2014;59: 718–723. https://doi.org/10.1134/S1063774514050083

Sorokin N. I., Karimov D. N., Volchkov I. S., Grigor’ev Yu. V., Sobolev B. P. Fluorine-ionic conductivity of superionic conductor crystals Na0.37Tb0.63F2.26. Crystallography Reports. 2019;64(4): 626–630. https://doi.org/10.1134/S1063774519040229

Furuya Y., Tanaka H., Fukuda K., … Yoshikawa A. Growth and luminescence properties of Eu-doped (Na0.425-xLu0.575x)F2.15-2x single crystals. Journal of Crystal Growth. 2011;318: 549–552. https://doi.org/10.1016/j.jcrysgro.2010.10.037

Furuya Y., Tanaka H., Fukuda K., …Yoshikawa A. Crystal growth, Nd distribution and luminescence properties of (Na0.425-xLu0.575x)F2.15-2x single crystals. Journal of Crystal Growth. 2011;318: 791–795. https://doi.org/10.1016/j.jcrysgro.2010.11.048

Novikov I. I. Two types of phase diagrams with congruently melting chemical compounds*. Doklady Akademii nauk SSSR. 1955;100(6): 1119–1121. (In Russ.)

Fedorov P. P. Transformations of T-x phase diagrams of binary systems in the condensed state: II. Phase equilibria under constraints. Russian Journal of Physical Chemistry A. 1999;73(9): 1387–1392. Available at: https://elibrary.ru/item.asp?id=13311944

Vistin L. L., Bondareva O. S., Fedorov P. P., Buchinskaya I. I., Sobolev B. P. Fluorite-like phases in the NaF-RF3 systems for rare earths from Tb to Lu. Butll. Soc.Cat. Sien. 1991;13(1): 285–291. Available at: https://www.researchgate.net/publication/266870490_FLUORITE-LIKE_PHASES_IN_THE_NaF-RF3_SYSTEMS_FOR_RARE_EARTHS_FROM_Tb_TO_Lu

Krivandina E. A., Bystrova A. A., Sobolev B. P., … Shtyrkova A. P. Growth and some properties of Na0.5-xR0.5+xF2+2x (R = Y, Dy-Lu; x = 0.1 and 0.15) single crystals with fluorite structure. Soviet Phusics Crystallography. 1992;37(6): 1523–1534.

Blistanov A. A., Chernov S. P., Karimov D. N., Ouvarova T. V. Peculiarities of the growth of disordered Na,R-fluorite (R = Y, Ce–Lu) single crystals. Journal of Crystal Growth. 2002; 237–239: 899–903. https://doi.org/10.1016/S0022-0248(01)02076-0

Vojna D., Karimov D. N., Ivanova A. G, … Mocek T. Growth and characterization of the KDy3F10 and Na0.38Dy0.62F2.24 fluoride crystals for the Faraday devices. Optical Materials. 2023;142: 114016. https://doi.org/10.1016/j.optmat. 2023.114016

Starobor A. V., Mironov E. A, Volkov M. R., … Palashov O. V. Thermal lens investigation in EuF2.11, PrF3, and Na0.38Ho0.62F2.24 crystals for magnetooptical applications. Optical Materials. 2020;99: 109542. https://doi.org/10.1016/j.optmat.2019.109542

Bohigas X., Lluma J., Tejada J., Krivandina E. A., Sobolev B. P. Magnetic susceptibility of sodium rare-earth fluorites Na0.5-xR0.5+xF2+2x (R = Dy, Ho, Er, Tm, Yb) and some ordered phases. Crystallography Reports. 2001;46(3): 483–487. https://doi.org/10.1134/1.1376482

Yi G. S., Lee W. B., Chow G. M. Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals. Journal of Nanoscience and Nanotechnology. 2007;7(8): 2790–2794. https://doi.org/10.1166/jnn.2007.638

Kuznetsov S. V., Ovsyannikova A. A., Tupitsyna E. A., … Osiko V. V. Phase formation in LaF3-NaGdF4, NaGdF4-NaLuF4, NaYF4-NaLuF4 systems: synthesis of powders by co-precipitation from aqueous solutions. Journal of Fluorine Chemistry. 2014;161: 95–101. https://doi.org/10.1016/j.jfluchem.2014.02.011

Ladol J., Khajuria H., Khajuria S., Sheikh H. N. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF4 nanoparticles. Bulletin of Materials Science. 2016;39(4): 943–952. https://doi.org/10.1007/s12034-016-1225-8

Yang S., Anderko A., Riman R. E., Navrotsky A. Thermochemistry of sodium rare earth ternary fluorides, NaREF4. Acta Materialia. 2021;220: 117289. https://doi.org/10.1016/j.actamat.2021.117289

Constantin V., Popescu A.-M. Structure and heat capacity of the NaCeF4 compound. Journal of Rare Earths. 2013;31: 911–915. https://doi.org/10.1016/s1002-0721(12)60378-0

Sobolev B. P., Aleksandrov V. B., Fedorov P. P., Seiranyan K. B., Tkachenko N. L. Variable-composition phases with the LaF3 structure in the systems MF2-(Y,Ln)F3. IV. X-ray characteristics, heterovalent isomorphic substitutions. Soviet Physics – Crystallography. 1976;21(1): 49–54.

Burns J. H. Crystal structure of hexagonal sodium neodymium fluoride and related compounds. Inorganic Chemistry. 1965;4: 881–886. https://doi.org/10.1021/ ic50028a025

Krämer K., Biner W., Frei D. G., Gudel H. U., Heblen M. P., Luthi S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chemistry of Materials. 2004;16: 1244–1251. https://doi.org/10.1021/cm031124o

Lage M. M., Moreira R. L., Matinaga F. M., Gesland J.‑Y. Raman and infrared reflectivity getermination of phonon modes and crystal structure of Czochralski-grown NaLnF4 (Ln = La,Ce,Pr,Sm,Eu, and Gd) single crystals. Chemistry of Materials. 2005;17: 4523–4529. https://doi.org/10.1021/cm050860k

Aebischer A., Hostettler M., Hauser J., … Burgi H.‑B. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tatrafluorides. Angewandte Chemie International Edition. 2006;45: 2802–2806. https://doi.org/10.1002/anie.200503966

Shi R., Brites C. D. S., Carlos L. D. Hexagonal-phasse NaREEF4 upconversion nanocrystals the matter of crystal structure. Nanoscale. 2021;13: 19771–19782. https://doi.org/10.1039/d1nr04209b

Voronkov A. A., Shumyatskaya N. G., Pyatenko Yu. A. Crystal structure of gagarinite. Journal of Structural Chemistry. 1962;3: 665–669. https://doi.org/10.1007/bf00744128

Frank-Kamenetskaya O. V., Fundamanskii V. S., Tsytsenko A. K., Frank-Kamenetskii V. A. Crystal structure of gagarinite from precision X-ray data: structural changes in the NaCaTRF6-Na1.5TR1.5F6 series. Crystallography Reports. 1994;39: 923–928.

Pontonnier L., Patrat G., Aleonard S., Capponi J.-J., Brunel M., de Bergevin F. An approach to the local arrangement of the fluorine atoms in the anionic conductors with the fluorite structure Na0.5–xY0.5+xF2+2x. Solid State Ionics. 1983;9-10: 549–554. https://doi.org/10.1016/0167-2738(83)90293-x

Zhurova E. A., Maksimov B. A., Sobolev B. P., Simonov V. I., Hull S., Wilson S. S. Defect structure of Na0.39Y0.61F2.22 crystals. Crystallography Reports. 1997;42: 238–242.

Otroshchenko L.P., Fekin L.E., ,Bystrova A.A., Sobolev B.P. Defect structure of Na0.5-xR0.5+xF2+2x (R = Ho,Yb) solid solutions (fluorite type). Crystallography Reports. 2000;45(6): 926–929.

Bevan D. J., Greis O., Strahle J. A new structural principle in anion-excess fluorite-related superlattices. Acta Crystallographica A. 1980;36: 889–890. https://doi.org/10.1107/s0567739480001878

Greis O., Haschke J. M. Rare earth fluorides. In: Handbook on the Physics and Chemistry of Rare Earth. Gscheidner K. A. & Eyring L. (eds.) Amsterdam, New York, Oxford: 1982;5(45): 387–460. https://doi.org/10.1016/s0168-1273(82)05008-9

Schmutz H. Untersuchungen in den Systemen Alkalifluorid-Lanthaniden/Actinidenfluorid (Li, Na, K, Rb-La, S.E.,Y/Np,Pu,Am). Thesis. Institute fur Radiochemie. Karsruhe. 1966. 71 p.

Hund F. Das ternäre Fluorid NaYF4. Zeitschrift für anorganische Chemie. 1950;261: 106–115. https://doi.org/10.1002/zaac.19502610110

Gaune-Escard M., Hoch M. Analysis of the enthalpy of mixing data of binary and ternary [rare earth (Nd,La, Y,Yb), Al-alkali metal] – fluoride systems. Journal of Alloys and Compounds. 2001;321: 267–275. https://doi.org/10.1016/s0925-8388(01)00962-8

Ard J. C., Schorne-Pinto J., Aziziha M., … Besmann Th. M. Thermodynamic assessmants or reassessmants of 30 pseudo-binary and – ternary systems. The Journal of Chemical Thermodynamics. 2023;177: 106931. https://doi.org/10.1016/j.jct.2022.106931

Fedorov P. P., Pavlova L. N., Bondareva O. S., … Sobolev B. P. Phases with a structure derived from fluorite in the NaF–RF3 and NaF–RF3–BaF2 systems*. Preprint No. 11. Moscow: A. V. Shubnikov Institute of Crystallography. 1990. 33 p. (In Russ.)

Mikheev V. I. X-ray determinant of minerals*. Moscow: Nedra Publ. 1957. (In Russ.)

Kovba L. M., Trunov V. K. X-ray phase analysis*. Moscow: Moscow State University Publ. 1978. (In Russ.)

Mai H.-X., Zhang Y.-W., Sun L.-D., Yan C.-H. Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. The Journal of Physical Chemistry C. 2007;111: 13730–13739. https://doi.org/10.1021/jp073919e

Li C., Yang J., Yang P., Zhang X., Lian H., Lin J. Two-dimensional b-NaLuF4 hexagonal microplates. Crystal Growth and Design. 2008;8: 923–928. https://doi.org/10.1021/cg7007528

Zhang F., Li J., Shan J., Xu L., Zhao D. Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chemistry – A European Journal. 2009;15: 11010–11019. https://doi.org/:10.1002/chem.200900861

Yang L. V., Han H. L., Zhang Y. Y., Zhong J. X. White emission by frequency up-conversion in Yb3+-Ho3+-Tm3+ triply doped hexagonal NaYF4 nanorods. The Journal of Physical Chemistry C. 2009;113: 18995–18999. https://doi.org/10.1021/jp9021689

Zhang F., Deng Y., Shi Y., Zhang R., Zhao D. Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array conducted photonic crystals. Journal of Materials Chemistry. 2010;20: 3895–3900. https://doi.org/10.1039/c000379d

Liu Q., Sun Y., Yang T., Feng W., Li C., Li F. Sub-10nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. Journal American Chemical Society. 2011;133: 17122–17125. https://doi.org/10.1021/ja207078s

Nordmann J., Voss B., Komban R., … Haase M. Synthasis of b-phase NaYF4:Yb,Er upconversion nanocrystals and nanorods by hot-injection of small particles of the a-phase. Zeitschrift für Physikalische Chemie. 2015;229: 247–262. https://doi.org/10.1515/zpch-2014-0616

Naccache R., Yu Q., Capobianco A. The fluride host: nucleartion, growth, and upconversion of lanthanide-doped nanoparticles. Advanced Optical Materials. 2015;3: 482–509. https://doi.org/10.1002/adom.201400628

Shen J.-W., Wang Z., Wei X., Liu J., Wei Y. Facile ex situ NaF size/morphology tuning strategy for highly monodisperse sub-5 nm b-NaGdF4:Yb/Er. CrystEngComm. 2018;20: 1185–1188. https://doi.org/10.1039/C7CE02141K

Laihinen T., Lastusaari M., Pihlgren L., … Hölsä J.. Thermal behaviour of the NaYF4:Yb3+,R3+ materials. Journal of Thermal Analysis and Calorimetry. 2015;121: 37–43. https://doi.org/10.1007/s10973-015-4609-x

Ivanov V. K., Fedorov P. P., Baranchikov A. Y., Osiko V. V. Oriented aggregation of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Review. 2014;83: 1204–1222. https://doi.org/10.1070/RCR4453

De Yoreo J. J., Gilbert P. U. P. A., Sommerdijk N. A. J. M., … Dove P. M. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science. 2015;349: 6247. https://doi.org/10.1126/science.aaa6760

Du P., Luo L., Yu J. S. Controlled synthesis and upconversion luminescence of Tm3+-doped NaYbF4 nanoparticles for non-invasion optical thermometry. Journal of Alloys and Compounds. 2018;739: 926–933. https://doi.org/10.1016/j.jallcom.2017.12.260

Vuković M., Dinić I., Jardim P., … Mančić L. The low-temperature sonochemical synthesis of up-converting b NaYF4: Yb, Er mesocrystals. Advanced Powder Technology. 2022;33(2): 103403. https://doi.org/10.1016/j.apt.2021.103403

Koshelev A. V., Grebenev V. V., Arkharova N. A., ShiryaevA. A., Karimov D. N. Preparation of rare-earth doped NaYF4 luminescent nanoparticles by a high-energy ball milling process. CrystEngComm. 2023;25(33): 4745–4754. https://doi.org/10.1039/d3ce00642e

Yang S., Jayanthi K., Anderko A., Riman R. E., Navrotsky A. Thermochemical investigatiion of the stability and conversion of nanocrystalline and high-temperature phases in sodium neodymium fluorides. Chemistry of Materials. 2021;33: 9571–9579. https://doi.org/10.1021/acs.chemmater.1c02829

Buznik V. M., Komissarova L. N., Moskvich Yu. N., Pushkina G. Ya. Study of anion mobility in lanthanum hydroxyfluorides*. Russian Journal of Inorganic Chemistry. 1980;425(6): 1488. (In Russ.). Available at: https://elibrary.ru/item.asp?id=29176401

Опубликован
2024-10-22
Как цитировать
Федоров, П. П., & Бучинская, И. И. (2024). Системы из фторидов натрия и редкоземельных элементов. Обзор. Конденсированные среды и межфазные границы, 26(4), 687-705. https://doi.org/10.17308/kcmf.2024.26/12415
Раздел
Обзор

Наиболее читаемые статьи этого автора (авторов)