Electrophilic-nucleophilic properties as a factor in the formation of antifriction and hydrophobic properties of surface-modified metals with ammonium and organosilicon compounds

Keywords: Electrophilic-nucleophilic properties, Dispersed metals, Ethylhydridesiloxane oligomer, Quantum-chemical modelling, Hydrophobicity, Antifriction properties

Abstract

Stabilisation of the functional properties of dispersed and compact metals, as well as the regulation of their reactivity, improvement of water-repellent, antifriction and anti-corrosion properties by creating the protective films on the surface is an urgent problem in relation to obtaining new materials. Previously, research conducted at REC “Nanotechnology” of the St. Petersburg Mining University proved that chemisorption of ethylhydridesiloxane vapours together with surfactants based on quaternary ammonium compounds has a beneficial effect on the water-repellent properties of metals. In order to obtain the physicochemical mechanism of the hydrophobisation of the surface of modified dispersed metals for the first
time, the study of the electrophilic-nucleophilic properties of the active substances of the surface modifiers of metals was carried out using the methods of quantum-chemical modelling using HyperChem software package. The dipole moment, energy of the highest occupied and the lowest unoccupied molecular orbitals, electrophilic-nucleophilic properties were determined. The series of enhancement of  ucleophilic/electrophilic properties and dipole moment for modifiers were obtained. The donor-acceptor properties, the differences in the characteristics of the molecules of alkamon, triamon, and hydrophobic silicone organic liquid were quantitatively and qualitatively established. The regularities of the formation of hydrophobic and antifriction properties in the composition of industrial oil I-20-surface-modified metal with various electrophilic-nucleophilic properties of the applied substances

Downloads

Download data is not yet available.

Author Biographies

Andrey G. Syrkov, Saint Petersburg Mining University, 21st line V.O., 1, St. Petersburg 199106, Russian Federation

DSc in Engineering, Professor,
Department of General and Technical Physics, Saint
Petersburg Mining University, Saint Petersburg,
Russian Federation; e-mail: Syrkov_AG@pers.spmi.ru

Vadim R. Kabirov, Saint Petersburg Mining University, 21st line V.O., 1, St. Petersburg 199106, Russian Federation

PhD student, Department of
Physical Chemistry, Saint-Petersburg Mining
University, Saint-Petersburg, Russian Federation;
e-mail: vkabirov1@gmail.com

Alexander P. Pomogaibin, Saint Petersburg Mining University, 21st line V.O., 1, St. Petersburg 199106, Russian Federation

Master student, Mineral
Processing Department, Saint Petersburg Mining
University, Saint Petersburg, Russian Federation;
e-mail: Pomogaibin.sasha@yandex.ru

Ngo Kuok Kkhan, Saint Petersburg Mining University, 21st line V.O., 1, St. Petersburg 199106, Russian Federation

PhD student, Department of
Chemical Technologies and Energy Processing, Saint
Petersburg Mining University, Saint Petersburg,
Russian Federation; e-mail: ngoquockhanh292@mail.ru

References

Syrkov A. G., Bazhin V. Yu., Mustafaev A. S. Nanotekhnologiya i nanomaterialy. Fizicheskie i mineral’no-syr’evye aspekty [Nanotechnology and nanomaterials. Physical and mineral aspects]. St. Petersburg: Politekh-Press Publ.; 2019. 244 p. (In Russ.)

Syrkov A. G., Pleskunov I. V., Kavun V. S., Taraban V. V., Kushchenko A. N. Changes in the sorption properties of dispersed copper containing ammonium compounds in the surface layer resulting from interaction with water vapours. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(1): 146–154. https://doi.org/10.17308/kcmf.2019.21/725 (In Russ., abstract in Eng.)

Silivanov M. O. Adsorbtsionnye i kislotnoosnovnye svoistva metallov, soderzhashchikh na poverkhnosti organogidridsiloksan i ammonievye soedineniya i ikh vliyanie na antifriktsionnyi effekt [Adsorption and acid-base properties of metals containing organohydridesiloxane and ammonium compounds on the surface and their influence on the antifriction effect]. Diss. Cand. Chem. Sciences / Saint Petersburg: Saint-Petersburg State Institute of Technology; 2018. 108 p. Available at: https://search.rsl.ru/ru/record/01008716048 (In Russ.)

Syrkov A. G., Silivanov M. O., Sychev M. M., Rozhkova N. N. Alteration of the acid-base properties of the oxidized surface of disperse aluminum during the adsorption of ammonium compounds and the antifriction effect. Glass Physics and Chemistry. 2018;44(5): 474–479. https://doi.org/10.1134/s1087659618050206

Remzova E. V. Nelineinost’ khimiko-organicheskikh svoistv poverkhnostno-modifitsirovannykh metallov i geterogennykh sistem na ikh osnove [Nonlinearity of chemical-organic properties of surface-modified metals and heterogeneous systems based on the]. Diss. Cand. Chem. Sciences / Voronezh: Voronezh State University; 2013. 140 p. Available at: https://search.rsl.ru/ru/record/01005058782

Slobodov A. A., Syrkov A. G., Yachmenova L. A., Prokopchuk N. R., Kavun V. S. Effect of temperature on solid-state hydride metal synthesis according to thermodynamic modeling. Journal of Mining Institute. 2019;239(5): 550–555. https://doi.org/10.31897/pmi.2019.5.550

Pleskunov I. V., Prokopchuk N. R., Syrkov A. G., Kabirov V. R. Water-repellent properties of copper powder modified by ammonium compounds during long-term treatment with saturated water vapor. Proceedings of BSTU Series 2: Chemical technologies. Biotechnology. Geoecology. 2019;2: 98–105. Available at: https://elibrary.ru/item.asp?id=40802132 (In Russ., abstract in Eng.)

Korobochkin V. V., Potgieter J. H., Usoltseva N. V., Dolinina A. S., An V. V. Thermal preparation and characterization of nanodispersed copper-containing powders produced by non-equilibrium electrochemical oxidation of metals. Solid State Sciences, 2020;108: 106434. https://doi.org/10.1016/j.solidstatesciences.2020.106434

Inamdar A. I., Pathak A., Usman M., Chiou K. R., Tsai P. H., Mendiratta S., Lu K. L. Highly hydrophobic metal–organic framework for self-protecting gate dielectrics. Journal of Materials Chemistry A. 2020;8(24): 11958–11965. https://doi.org/10.1039/d0ta00605j

Berezhnoi Y. M., Lipkin V. M., Likhota A. D. The influence of polyelectrolytes on the properties of ultramicron and nanosized powders of copper. Materials Science Forum. 2018;945: 505–508. https://doi.org/10.4028/www.scientific.net/MSF.945.505

Khananashvili L. M., Andrianov K. A. Tekhnologiya elementoorganicheskikh monomerov i oligomerov [Technology of organoelement monomers and oligomers]. Moscow: Khimiya Publ.; 1983. 380 p. (In Russ.)

Ignat’ev V. M., Emel’yanova N. S., Sanina N. A. Quantum chemical modeling in the system polyvinylpyrrolidone – cation of the dinitrosyl iron complex. Russian Chemical Bulletin. 2020;69(12): 2265–2269. https://doi.org/10.1007/s11172-020-3045-7

Gribanov E. N., Markov O. I., Khripunov Yu. V. Quantum chemical modeling bismuth-based clusters. Materials Physics and Mechanics. 2020;43(1): 72–83. https://doi.org/10.18720/MPM.4312020_9 (In Russ.,abstract in Eng.)

St. John P. C., Guan Y., Kim Y., Etz B. D., Kim S., Paton R. S. Quantum chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell molecules. Scientific Data. 2020;7(1): 244. https://doi.org/10.1038/s41597-020-00588-x

Grambow C. A., Li Y. P., Green W. H. Accurate thermochemistry with small data sets: A bond additivity correction and transfer learning approach. The Journal of Physical Chemistry A. 2019;123(27): 5826–5835. https://doi.org/10.1021/acs.jpca.9b04195

Kumer A, Sarker M, Paul S. The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. International Journal of Chemistry and Technology. 2019;3(1): 26–37. https://doi.org/10.32571/ijct.478179

Clark T. A handbook of computational chemistry: A practical guide to chem. structure a. energy calculations. New York: Wiley; 1985. 332 p.

Nechaev I. V., Vvedenskii A. V. Quantum chemical modeling of the interaction in MeN(H2O)M (Me = Cu, Ag, Au; N = 1–3; M = 1, 2) system. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(1): 105–115. https://doi.org/10.17308/kcmf.2019.21/722 (In Russ., abstract in Eng.)

Kim A. M. Organicheskaya khimiya [Organic chemistry]. Novosibirsk: Izdatel’stvo Novosibirskogo un-ta Publ.; 2002. 844 p. (In Russ.)

Lowell S., Shields J. E. Adsorption isotherms. In: B. S. Powder Surface Area and Porosity. Dordrecht: Springer; 1984. 320 p. https://doi.org/10.1007/978-94-009-5562-2_3

Roberts M. W, McKee C. S. Chemistry of the metal-gas interface. Toronto: Clarendon Press; New York: Oxford University Press; 1978. 594 p.

Salem R. R. Fizicheskaya khimiya: Nachala teoreticheskoi elektrokhimii [Physical Chemistry: Beginnings of Theoretical Electrochemistry]. Moscow: Lenand Publ.; 2021. 320 p. (In Russ.)

Pozhidaeva S. V., Ageeva L. S., Ivanov A. M. Comparative analysis of zinc and tin oxidation with acids at room temperatures. Journal of Mining Institute. 2018;235(1): 38–46. https://doi.org/10.31897/pmi.2019.1.38

Abramzon A. A. Poverkhnostnoaktivnye veshchestva. Sintez, analiz, svoistva, primenenie [Surfactants. Synthesis, analysis, properties, application]. Leningrad: Khimiya Publ.; 1988. 200 p. (In Russ.)

Hussein O. A., Khudhair D. M., Aljbar A. A. A. A. IR spectroscopic study of triiodosilane (SiHI3) by using semi-empirical quantum program. Journal of Physics: Conference Series. 2021;1818 (1): 012014. https://doi.org/10.1088/1742-6596/1818/1/012014

Pleskunov I. V., Syrkov A. G., Kabirov V. R. Quantum-chemical modeling of quaternar y ammonium compounds for modification of metal surface (Book Chapter). In: New Materials: preparation, properties and applications in the aspect of nanotechnology. New York: Nova Science Publishers, Inc; 2020. p. 75–84.

Published
2021-06-18
How to Cite
Syrkov, A. G., Kabirov, V. R., Pomogaibin, A. P., & Kkhan, N. K. (2021). Electrophilic-nucleophilic properties as a factor in the formation of antifriction and hydrophobic properties of surface-modified metals with ammonium and organosilicon compounds. Condensed Matter and Interphases, 23(2), 282-290. https://doi.org/10.17308/kcmf.2021.23/3478
Section
Original articles