A 3D computer model of the CaO-MgO-Al2O3 T-x-y diagram at temperatures above 1300 °C

  • Vera P. Vorob’eva Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation https://orcid.org/0000-0002-2714-3808
  • Anna E. Zelenaya Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation https://orcid.org/0000-0001-5232-8567
  • Vasily I. Lutsyk Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation https://orcid.org/0000-0002-6175-0329
  • Marina V. Lamueva Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation https://orcid.org/0000-0001-8347-1753
Keywords: Phase diagram, Computer simulation, Oxides of calcium, magnesium, and aluminium

Abstract

The research analyses the controversies surrounding the technique for the formation of a CaO-Al2O3 binary system and the nature of melting of compounds in it, i.e. whether the 12:7 compound is technically possible and whether the 1:1 and 1:2 compounds are congruently or incongruently melting compounds. It also discusses whether in the CaO-MgO-Al2O3 ternary system the following compounds can be formed: a 3:1:1 compound alone or, in addition to it, two more compounds of 1:2:8 and 2:2:14. A 3D model of the T-x-y diagram was created for the most common version, with six binary and three ternary compounds. Its high-temperature portion (above 1300°C) consisted of 234 surfaces and 85 phase regions. Ternary compounds were formed as a result of three peritectic reactions. Besides them, six quasi-peritectic and three eutectic
invariant reactions occurred in the system with the participation of the melt. The principle of construction for a threedimensional model involved a gradual transition from a phase reaction scheme (which is transformed into a scheme of uni- and invariant states) presented in a tabulated and then in a graphical form (a template of ruled surfaces and isothermal planes corresponding to invariant reactions) to a T-x-y diagram prototype (graphic images of all liquidus, solidus, and solvus surfaces). The design was concluded with the transformation of the prototype into a 3D model of the real system after the input of the base points coordinates (concentrations and temperatures) and the adjustment of curvatures of lines and
surfaces. The finished model provides a wide range of possibilities for the visualisation of the phase diagram, including the construction of any arbitrarily assigned isothermal sections and isopleths. The 3D model was designed with the help of the author’s software PD Designer (Phase Diagram Designer). To assess the quality of the 3D model, two  versions of an isothermal section at 1840 °C were compared: model section and a fragment of an experimental section near Al2O3.

Downloads

Download data is not yet available.

Author Biographies

Vera P. Vorob’eva, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation

DSc in Physics and Mathematics,
Leading Researcher at the Sector of Computer
Materials Design, Institute of Physical Materials
Science, Siberian Branch of the Russian Academy of
Sciences, Ulan-Ude, Russian Federation; e-mail:
vvorobjeva@mail.ru

Anna E. Zelenaya, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation

PhD in Physics and Mathematics,
Senior Researcher at the Sector of Computer Materials
Design, Institute of Physical Materials Science,
Siberian Branch of the Russian Academy of Sciences,
Ulan-Ude, Russian Federation; e-mail: zel_ann@mail.ru

Vasily I. Lutsyk, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation

DSc in Chemistry, Head of the
Sector of Computer Materials Design, Institute of
Physical Materials Science, Siberian Branch of the
Russian Academy of Sciences, Ulan-Ude, Russian
Federation; e-mail: vluts@ipms.bscnet.ru

Marina V. Lamueva, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 6 Sakhianova ul., Ulan-Ude 670047, Russian Federation

post-graduate student of
Sector of Computer Materials Design, Institute of
Physical Materials Science SB RAS, Ulan-Ude, Russian
Federation, e-mail: marina_bgu@mail.ru

References

Surkov N. V., Gartvich Y. G. Modeling of deepseated high-alumina parageneses on the basis of the stability fields of corundum- and spinel-normative assemblages of the system CaO-MgO-Al2O3-SiO2. Russian Geology and Geophysics. 2012;53(1): 51–61. https://doi.org/10.1016/j.rgg.2011.12.004

Banushkina S. V., Gartvich Yu. G., Golitsyna Z. F., Surkov N. V. Experimental study of monovariant melting possibilities in the forsterite-normative part of the CaO-MgO-Al2O3-SiO2 system in connection with the formation of spinel peridotitis. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal = International Research Journal. 2017;66(12): 153–161. https://doi.org/10.23670/IRJ.2017.66.050 (In Russ., abstract in Eng.)

Shabanova G. N., Korogodskaya A. N. Physical and chemical bases of spinel cements containing. Part 1. Subsolidus structure of aluminate oxide systems. Ogneupory i tekhnicheskaya keramika = Refractories and technical ceramics. 2014;6: 3–7. Available at: https://w w w.elibrar y.ru/item.asp?id=23998838 (In Russ., abstract in Eng.)

Lutsyk V. I., Vorob’eva V. P. Computer models of eutectic-type T–x–y diagrams with allotropy. Journal of Thermal Analysis and Calorimetry. 2010;101(1): 25–31. https://doi.org/10.1007/s10973-010-0855-0

Vorob’eva V. P., Zelenaya A. E., Lutsyk V. I., Sineva S. I., Starykh R. V., Novozhilova O. S. Hightemperature area of the Fe-Ni-Co-Cu diagram: experimental study and computer design. Journal of Phase Equilibria and Diffusion. 2021;42(2): 175-193. https://doi.org/10.1007/s11669-021-00863-3

Lutsyk V. I., Zelenaya A. E., Zyryanov A. M. Multicomponent systems simulation by the software of «Diagrams Designer». Journal Materials, Methods & Technologies. International Scientific Publications. 2008;2(1): 176–184. Available at: https://www.scientific-publications.net/download/materialsmethods-and-technologies-2008.pdf

Levin E. M., Robbins C. R., McMurdie H. F. Phase Diagrams for Ceramists. Ohio: American. Ceramic Society; 1964. 600 p. 8. Berezhnoi A. S. Mnogokomponentnyye sistemy okislov [Multicomponent systems of oxides]. Kiev: Naukova dumka Publ.; 1970. 542 p. (In Russ.)

Toropov N. A., Barzakovsky V. P., Lapshin V. V., Kurtseva N. N. Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. Vyp. pervyy. Dvoynyye sistemy [State diagrams of silicate systems. Reference book. Issue first. Binary systems]. Leningrad: Science, Leningrad Branch Publ.; 1969. 822 p. (In Russ.)

Jung I. -H., Decterov S. A., Pelton A. D. Critical thermodynamic evaluation and optimization of the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 systems. Journal of Phase Equilibria and Diffusion. 2004;25(4): 329–345. https://doi.org/10.1007/s11669-004-0151-4

Zienert T., Fabrichnaya O. Thermodynamic assessment and experiments in the system MgO-Al2O3. СALPHAD. 2013;40: 1–9. https://doi.org/10.1016/j.calphad.2012.10.001

Lea F. M., Desh C. H. The chemistry of cement and concrete. 2d ed., London: Edward Arnoid & Co; 1956.

Nurse R. W., Welch J. H., Majumdar A. J. The CaO-Al2O3 system in a moisture-free atmosphere. Transactions of the British Ceramic Society. 1965;64: 409–418.

Berman R. G., Brown T. H. A Thermodynamic model for multicomponent melts, with application to the system CaO-A12О3-SiО2. Geochimica et Cosmochimica Acta. 1984;48(4): 661–678. https://doi.org/10.1016/0016-7037(84)90094-2

Mao H., Selleby M., Sundman B. A re-evaluation of the liquid phases in the CaO-Al2O3 and MgO-Al2O3 systems. CALPHAD. 2004;28(3): 307–312; https://doi.org/10.1016/j.calphad.2004.09.001

Jerebtsov D. A., Mikhailov G. G. Phase diagram of CaO-Al2O3 system. Ceramics International... 2001;27(1): 25–28. https://doi.org/10.1016/S0272-8842(00)00037-7

Smirnov G. S., Chatterjee A. K., Zhmoidin G. I. The phase equilibrium diagram of the ternary subsystem CaO-CaO·Al2O3-11CaO·7Al2O3·CaF2. Journal of Materials Science. 1973;8(9): 1278–1282. https://doi.org/10.1007/BF00549342

Taylor H. F. W. Cement chemistry. London: Thomas Telford; 1997. 459 p.

Lea F. Lea’s chemistry of cement and concrete. London: Elsevier Ltd; 1998. 1057 p.

De Noirfontaine M. -N., Tusseau-Nenez S., Girod-Labianca C., Pontikis V. CALPHAD formalism for portland clinker: Thermodynamic models and databases. Journal of Materials Science. 2012;47(3): 1471–1479. https://doi.org/10.1007/s10853-011-5932-7

Hentschel G. Mayenit 12CaO·7Al2O3 und brownmillerit, 2CaO·(Al,Fe)·2O3, zwei neue minerale in den kalksteineinschlüssen der lava des ettringer bellerberges. Neues Jahrbuch für Mineralogie, Monatshefte. 1964: 22–29.

Tolkacheva A. S., Shkerin S. N., Plaksin S. V., et al. Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O. Russian Journal of Applied Chemistry. 2011;84(6): 907–911. https://doi.org/10.1134/S1070427211060012

Rankin G. A., Merwin H. E. The ternary system CaO-Al2O3-MgO. Journal of the American Chemical Society. 1916;38(3): 568–88; https://doi.org/10.1021/ja02260a006

De Aza A. H., Iglesias J. E., Pena P., De Aza S. Ternary system Al2O3–MgO–CaO: Part II, Phase relationships in the subsystem Al2O3-MgAl2O4- CaAl4O7. Journal of the American Chemical Society. 2000;83(4): 919–27. https://doi.org/10.1111/j.1151-2916.2000.tb01295.x

Published
2021-08-17
How to Cite
Vorob’eva, V. P., Zelenaya, A. E., Lutsyk, V. I., & Lamueva, M. V. (2021). A 3D computer model of the CaO-MgO-Al2O3 T-x-y diagram at temperatures above 1300 °C. Condensed Matter and Interphases, 23(3), 380-386. https://doi.org/10.17308/kcmf.2021.23/3529
Section
Original articles