Исследование осаждения наночастиц фторида кальция на сколах монокристаллов фторида кальция
Аннотация
Исследовано осаждение наночастиц фторида кальция на сколах монокристаллов фторида кальция. Наночастицы CaF2 синтезировали методом соосаждения из водных нитратных растворов с использованием фтороводородной кислоты в качестве фторирующего агента на установке периодического действия. Полученные образцы исследовали методами атомно-силовой микроскопии, растровой электронной микроскопии, просвечивающей электронной микроскопии и спектроскопии оптического поглощения. Наблюдается неоднородное покрытие поверхности
подложки субмикронными частицами размером около 100–150 нм, которые представляют собой сростки наночастиц размером 15–20 нм. Исходные наночастицы когерентно нарастают на поверхность кристаллической подложки. Термообработка композита подложка-осажденный слой при 600 ºС приводит к сращиванию субмикронных частиц и формированию пористого слоя сложной структуры.
Скачивания
Литература
Colfen H., Antonietti M. Mesocrystals and nonclassical crystallization. John Wiley & Sons, Ltd: Chichester; 2008. https://doi.org/10.1002/9780470994603
Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Reviews. 2014;83(12): 1204–1222. https://doi.org/10.1070/RCR4453
De Yoreo J. J., Gilbert P. U. P. A., Sommerdijk N. A. J. M., Penn R. L., Whitelam S., Joester D., Zhang H., Rimer J. D., Navrotsky A., Banfield J. F., Wallace A. F., Miehel F. M., Meldrum F. C., Cölfen H., Dove P. M. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science. 2015;349(6247): aaa6760-1–aaa6760-8. https://doi.org/10.1126/science.aaa6760
Garsio-Romero E., Suares M. A structure-based argument for non-classical crystal growth in natural clay minerals. Mineralogical Magazine. 2018;82: 171. https://doi.org/10.1180/minmag.2017.081.031
Sushko M. L. Understanding the driving forces for crystal growth by oriented attachment through theory and simulations. Journal of Materials Research. 2019;34: 2914–2927 https://doi.org/10.1557/jmr.2019.151
Fedorov P. P., Osiko V. V. Relationship between the faceting of crystals and their formation mechanism. Doklady Physics. 2019;64(9): 353–355. https://doi.org/10.1134/S1028335819090076
Neira-Carrillo A., Vásquez-Quitral P., Sánchez M., Farhadi-Khouzani M., Aguilar-Bolados H., Yazdani-Pedram M., Cölfen H. Functionalized multiwalled CNTs in classical and nonclassical CaCO3 crystallization. Nanomaterials. 2019;9(8): 1169. https://doi.org/10.3390/nano9081169
Witts B. D., Clode P. L., Patel N. H., Schroder-Turk G. E. Natures’s functional nanomaterials: Growth or self-assembly? MRS Bulletin. 1919;44(2): 106–112. https://doi.org/10.1557/mrs.2019.21
Zhou W. Reversed crystal growth. Crystals. 2019;9:7. https://doi.org/10.3390/cryst9010007
Liu Y., Geng H., Qin X., Yang Y., Zeng Z., Chen S., … Kawazoe Y. Oriented attachment revised: Does a chemical reaction occur? Matter. 2019;1(3): 390–704. https://doi.org/10.1016/j.matt.2019.05.001
Colfen H. Nonclassical nucleation and crystallization. Crystals. 2020;10(2): 61. https://doi.org/10.3390/cryst10020061
Bard A. B., Zhou X., Xia X., Zhu G., Lim M. B., Kim S. M., … Pauzauskie P. J. A mechanistic inderstanding of non-classical crystal growth in hydrothermally synthezied sodium yttrium fluoride nanowires. Chemistry of Materials. 2020;32(7): 2753–2763. https://doi.org/10.1021/acs.chemmater.9b04076
Mu Z., Tang R., Liu Z. Construction of inorganic bulks through coalescence of particle precurcor. Nanomaterials. 2021;11(1): 241. https://doi.org/10.3390/nano11010241
Mashiach R., Weissman H., Avram L., Houben L., Brontvein O., Lavie A., Arunacalam V., Leskes M., Rybtchinski B., Bar-Shir A. In situ NMR reveals realtime nanocrystal growth evolution via monomerattachment or particle-coalescence. Nature Communications. 2021;12(1): 229. https://doi.org/10.1038/s41467-020-20512-6
Fedorov P. P., Ivanov V. K., Osiko V. V. Basic features and crystal growth scenarios based on the mechanism of oriented attachment growth of nanoparticles. Doklady Physics. 2015;60(11): 483–485. https://doi.org/10.1134/S1028335815110105
Shubnikov A. V. Kak rastut kristally [How crystals grow]. Мoscow–Leningrad: Publ. AN SSSR; 1935. 176 p. (In Russ.)
Maslov V. A., Chernova E. V., Fedorov P. P. Search for flux media for crystallization of epitaxial fluorite layers. Crystallography Reports. 2020;65(4): 647 652. https://doi.org/10.1134/S106377452004015X
Fedorov P. P., Kuznetsov S. V., Mayakova M. N., Voronov V. V., Ermakov R. P., Baranchikov A. E., Osiko V. V. Coprecipitation from aqueous solutions to prepare binary fluorides. Russian Journal of Inorganic Chemistry. 2011;56(10): 1525–1531. https://doi.org/10.1134/S003602361110007X
Komandin G. A., Gavdush A. A., Goncharov Y. G., Porodinkov O. E., Nozdrin V. S., Chuchupal S. V., Spektor I. E. Electrodynamical characteristics of a-lactose monohydrate in the terahertz range. Optics and Spectroscopy. 2019;126(5):514–522. https://doi.org/10.1134/S0030400X1905014X
Gaynutdinov R., Voronov V. V., Chernova E. V., Maslov V. А., Mayakova M. N., Chislov A. S., Novikov I. A., Fedorov P. P. Flints as nanostructured chalcedons. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2020;14(4):762–770. https://doi.org/10.1134/S1027451020040084
Copyright (c) 2021 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.