GRAPHOANALYTICAL ESTIMATE OF THE DYNAMIC CAPACITY OF GLAUCONITE IN THE JOINT SORPTION OF THE CU (II), NI (II), ZN (II) Сu(II), Ni(II), Zn(II) CATIONS

  • V. I. Vigdorovich Dr. Sci. (Chem.), Professor, Academician of the Russian Academy of Natural Sciences, Honored Worker of Science and Technology of the Russian Federation, Chief Scientifi c Offi cer of VNIITiN, Professor of Tambov State Technical University in combination; tel./fax: +7(4752) 446414, e-mail: vits21@mail.ru
  • T. V. Zhukovskaia Cand. Sci. (Phys.-Math), Associate Professor of the Higher Mathematics Department of Tambov State Technical University; tel.: +7(960) 6674147
  • L. E. Tsygankova Dr. Sci. (Chem.), Professor, Academician of the Russian Academy of Natural Sciences, Head of the Department of Chemistry and Ecological Safety, Tambov State University named after G.R. Derzhavin; tel.: +7(902) 7276258, e-mail: vits21@mail.ru
  • M. N. Uryadnikova Cand. Sci. (Chem.), Senior Lecturer of the Department of Chemistry and Environmental Safety, Tambov State University named after G. R. Derzhavin; tel.: +7(910) 6567866, e-mail: esinamarisha@ rambler.ru
  • N. V. Shel Dr. Sci. (Chem.), Professor of the Department «Chemistry and Chemical Technologies», Tambov State Technical University: tel.: +7(910) 6549099, e-mail: vits21@mail.ru
Keywords: glauconite, stream, sorption, copper, nickel, zinc, dynamic capacity, calculation

Abstract

The paper proposes a calculation method to estimate the amount of adsorbate substance (N) and the dynamic capacity of the sorbent (Q) under the conditions of purification from pollutants of flowing solutions. The considered approaches are valid for using sorbents and removing sorbates of any nature from flowing media, regardless of the volume flow rates of the eluate under laminar flow conditions.

The method is based on the use of β-spline curves and is based on the properties of geometric continuity used in solving problems of geometric modelling by means of cubic polynomials. It allows:

- calculating the values of the dynamic capacity Q at any time from the beginning of the sorption in the absence of an experimental estimate of the sorption coefficient ρτi

- evaluating the calculated time of continuous operation of the sorbent until its replacement or regeneration.

At room temperature, glauconite Qi values were obtained for Cu (II), Ni (II), Zn (II) cations at joint sorption as a function of the nature of the adsorbate with the account of the height of the adsorbate, the linear flow rate, and the arbitrary time interval from the beginning of the process. The relative sorption capacity of cations depending on the same factors was evaluated. It is shown that as the flow rate increases the dynamic capacity of the sorbent increases in the series:

QNi(II) > QZn(II) > QСu(II)

 

ACKNOWLEDGMENTS

 

The results of the experiment were obtained using the equipment of Shared Scientific Equipment Centre of Derzhavin Tambov State University.

 

Downloads

Download data is not yet available.

References

1. Srivastava Р., Singh В., Angove М. J. Coll. Interface Sci., 2005, vol. 290, no. 1, pp. 28 - 38. DOI: 10.1016/j.jcis.2005.04.036
2. Singh К. K., Rastogy R., Hasan S. H. J. Coll. Interface Sci., 2005, vol. 290, no. 1, pp. 61 - 68. DOI: 10.1016/j.jcis.2005.04.011
3. Egirany D. E., Baker A. R., Andrews J. E. J. Coll. Interface Sci., 2005, vol. 291, no. 2, pp. 319 - 325. DOI: 10.1016/j.jcis.2005.05.00
4. Zhao J., Zhy Y. J., Wu J., Zheng J.-O., Zhao X.-Yu., Lu B.-Q., Chen F. J. Coll. Interface Sci., 2014, vol. 418, no. 1, pp. 208 - 215. DOI: 10.1016/j.jcis.2013.12.016
5. Teutli-Sequeira A., Solache-Ríos M., Martínez-Miranda V., Linares- Hernández I. J. Coll. Interface Sci., 2014, vol. 418, no. 1, pp. 254 - 260. DOI: 10.1016/j.jcis.2013.12.020
6. Liu B., Lu J., Xie Yu., Yang B. Wang X., Sun R. J. Coll. Interface Sci., 2014, vol. 418, no. 1, pp. 311 - 316. DOI: 10.1016/j.jcis.2013.12.035
7. Konkova T. V., Alekhina M. B., Mikhaylichenko A. I., Kandelaki G. I., Morozov A. N. Protection of Metals and Physical Chemistry of Surfaces, 2014, vol. 50, no. 3, pp. 277 – 281. DOI: 10.7868/S0044185614030085
8. Dudareva G. N., Petukhova G. N., Nguyen A. T. N., Syrykh Yu. S. Protection of Metals and Physical Chemistry of Surfaces, 2013, vol. 49, no. 4, pp. 389 - 396. DOI: 10.7868/S0044185613040025
9. Ogorodova L. P., Melchakova L. V., Vigasina M. F., Krupskaya V. V., Kiseleva I. A. J. of Physical Chemistry., 2014, vol. 88, no. 11, pp. 1824 – 1827. DOI: 10.7868/S0044453714100306
10. Belchinskaya L. I., Khodosova N. A., Strelnikova O. Yu., Petukhova G. A., Ciganda L. Protection of Metals and Physical Chemistry of Surfaces, 2015, vol. 51, no. 5, pp. 487 - 494. DOI: 10.7868/S0044185615050046
11. Kotova D. L., Vasilyeva S. Yu., Krysanova T. A., Khromova A. S., Fam Thi Gam. Protection of Metals and Physical Chemistry of Surfaces, 2015, vol. 51, no. 4, pp. 351 – 356. DOI: 10.7868/S0044185615040191
12. Pomazkina O. I., Filatova E. G., Pozhidaev Yu. N. Protection of Metals and Physical Chemistry of Surfaces, 2015, vol. 51, no. 4, pp. 370 - 374. DOI: 10.7868/S0044185615040269
13. Kostin A. V., Mostagina L. V., Bukhtoyarov O. I. Protection of Metals and Physical Chemistry of Surfaces, 2015, vol. 51, no. 5, pp. 477 - 482. DOI: 10.7868/S0044185615050174
14. Vieira M. G. A., Almeida Neto A. F., Gimenes M. L., M. G. C. da Silva. J. of Hazardous Material, 2010, vol. 176, no. 1, pp. 109-118. DOI: 10.1016/j.jhazmat.2009.10.128
15. Dudareva G. N., Randin O. I., Petukhova G. A., Vakulskaya T. I. Protection of Metals and Physical Chemistry of Surfaces, 2015, vol. 51, no. 6, pp. 582 - 586. DOI: 10.7868/S0044185615060066
16. Liu Zhi-rong, Zhou Shao-qi. Process Safety and Environmental Protection, 2010, vol. 88, no. 1, pp. 62-66. DOI: 10.1016/j.psep.2009.09.001
17. Ozlem Korkut, Enes Sayan, Oral Lacin, Bahar Bayrak. Desalination, 2010, vol. 259, no. 3, pp. 243-248. DOI: 10.1016/j.desal.2010.03.045
18. Abollino O., Aceto M., Malandrino M., Sarzanini C., Mentasti E. Water Research, 2003, vol. 37, pp. 1619 - 1627. DOI: 10.1016/S0043-1354(02)00524-9
19. Vieira M. G. A., Almeida Neto A. F., Grimens M. L., Silva M. G. C. Hazardous Materials, 2010, vol. 176, no. 2, pp. 109 - 118. DOI: 10.1016/j.jhazmat.2009.10.128
20. Almeida Neto A. F., Vieira M. G. A., Silva M. G. C. J. Water Process Engineering, 2014, vol. 3, no. 1, pp. 90 – 97. DOI: 10.1016/j.jwpe.2014.05.014
21. Gonzalez A. G., Pokrovsky О. S. J. Coll. Interface Sci., 2014, vol. 415, pp. 169 - 178. DOI: 10.1016/j.jcis.2013.10.028
22. Vigdorovich V. I., Tsygankova L. E., Shel N.V., Esina M. N., Shel E. Yu., Omutkov M. S., Pustynnikov Ya. A. Materialy VIII Mezhdunarodnoi nauchno-innovatsionnoi molodezhnoi konferentsii «Sovremennye tverdofaznye tekhnologii: teoriya, praktika, innovatsionnyi menedzhment» [Proc. 8th Int. Scientific and Innovative Youth Conference «Modern Solid-Phase Technologies: Theory, Practice, Innovative Management»]. Tambov, Chesnokova A. V. Publ., 2016, рp. 34 - 49. (in Russ.)
23. Samarskii A. N. Vvedenie v chislennye metody [Introduction to Numerical Methods]. Moscow, Nauka, Home Edition of Physical and Mathematical Literature Publ., 1982, 272 p. (in Russ.)
24. Shikin E. V., Boreskov A. V. Komp'yuternaya grafika. Dinamika, realisticheskie izobrazheniya [Computer Graphics. Dynamics, Realistic Images]. Moscow, Dialogue - MEPhI. Publ., 1995, 288 p. (In Russ.)
25. Vishnyakov Ya. D., Burtseva N. N., Kiseleva S. P., Rykov S. V., Ryazanova N. E. Normirovanie i snizhenie zagryazneniya okruzhayushchei sredy [Normalization and Reduction of Environmental Pollution]. Moscow, Academy Publ., 2015, 386 p.
26. Venitsianov E. V., Rubinshtein R. N. Dinamika sorbtsii iz zhidkikh sred [Dynamics of Sorption from Liquid Media]. Moscow, Nauka Publ., 1983, 253 p.
27. Kuznetsov A. M. Charge Transfer in Chemical Reaction Kinetics. Presses Polytechniqiues et Universitaires Romandes, Lausanne, 1997, 110 p.
Published
2018-03-06
How to Cite
Vigdorovich, V. I., Zhukovskaia, T. V., Tsygankova, L. E., Uryadnikova, M. N., & Shel, N. V. (2018). GRAPHOANALYTICAL ESTIMATE OF THE DYNAMIC CAPACITY OF GLAUCONITE IN THE JOINT SORPTION OF THE CU (II), NI (II), ZN (II) Сu(II), Ni(II), Zn(II) CATIONS. Condensed Matter and Interphases, 20(1), 32-41. https://doi.org/10.17308/kcmf.2018.20/474
Section
Статьи