Features of the shear elasticity relaxation of metallic glasses

  • Yuriy P. Mitrofanov Voronezh State Pedagogical University 86, Lenina str., 394043 Voronezh, Russian Federation
Keywords: metallic glasses,, shear elasticity,, relaxation

Abstract

Purpose. The work is aimed at a determination of the regularities of the changes of the shear elasticity occurring upon structural relaxation of metallic glasses.

Methods and methodology. Glassy Pd43.2Cu28Ni8.8P20, Pd41.25Cu41.25P17.5, Zr46Cu46Al8 and Zr46Cu45Al7Ti2 (at. %) produced by melt suction (Zr-based MGs) and melt jet quenching (Pd-based MGs) were chosen for the investigation. In situ measurements of the shear modulus G were carried out at frequencies of about 500 kHz at a high relative precision of up to ≈5 ppm by the electromagnetic acoustic resonance method.

Results. The change of modulus G with temperature can be described as the sum of three components – anharmonic, electronic and relaxation. Despite the differences in the physical properties of metallic glasses under investigations (chemical composition, glass forming ability, glass transition temperatures, etc.) including the different behavior of the anharmonic and electronic components, one observes distinctive common regularities of the relaxation of their shear elasticity upon heat treatment. It is found that structural relaxation leads to an increase of shear modulus below the glass transition temperature Tg and decreases it at T > Tg.

Conclusions. It is concluded that the mechanism of shear elasticity relaxation of non-crystalline metallic structures is universal despite of variations of the chemical composition.

 

SOURCE OF FINANCING

This work was supported by the Ministry of Education and Science of the Russian Federation (grant No. 3.1310.2017 / 4.6).

ACKNOWLEDGMENTS

The author thanks prof. V.A. Khonik for discussing the article.

 

 

REFERENCES

  1. Dyre С. Reviews of Modern Physics, 2006, vol. 78, pp. 953–972. https://doi.org/10.1103/revmodphys.78.953
  2. Dyre J. C., Olsen N. B., Christensen T. Physical Review B, 1996, vol. 53, pp. 2171–2174. https://doi.org/10.1103/physrevb.53.2171 
  3. Khonik V. A., Mitrofanov Yu. P., Lyakhov S. A., Vasiliev A. N., Khonik S. V., Khoviv D. A. Physical Review B, 2009, vol. 79, pp. 132204-1–132204-4. https://doi.org/10.1103/physrevb.79.132204
  4. Chen H. S. Reports on Progress in Physics, 1980, vol. 43, pp. 353–432. https://doi.org/10.1088/0034-4885/43/4/001  
  5. Hirao M., Ogi H. EMATS for Science and Industry: Noncontacting Ultrasonic Measurements. New-York, Springer, 2003, p. 372.
  6. Vasil'ev A. N., Buchel'nikov V. D., Gurevich M. I., Kaganov M. I., Gajdukov Ju. P. Electromagnetic Excitation of Sound in Metals. Cheljabinsk, Izd-vo JuUrGU Publ., 2001, 339 p.
  7. Wang W. H. Progress in Materials Science, 2012, vol. 57, pp. 487–656. https://doi.org/10.1016/j.pmatsci.2011.07.001  
  8. Watanabe L. Y., Roberts S. N., Baca N., Wiest A., Garrett S. J., Conner R. D. Materials Science and Engineering: C, 2013, vol. 33, pp. 4021–4025. https://doi.org/10.1016/j.msec.2013.05.044 
  9. Wang D. P., Zhao D. Q., Ding D. W., Bai H. Y., Wang W. H. Journal of Applied Physics, 2014, vol. 115, pp. 123507-1–123507-4. https://doi.org/10.1063/1.4869548
  10. Zhang Z., Keppens V., Liaw P. K., Yokoyama Y. Journal of Materials Research, 2006, vol. 22, pp. 364–367. https://doi.org/10.1557/jmr.2007.0040 
  11. Khonik V. A. Izvestija Akademii Nauk. Serija fizicheskaja [Bulletin of the Russian Academy of Sciences: Physics], 2001, vol. 65, no. 10, pp. 1465–1471. (in Russ.)
  12. Shtremel' M. A. The Strength of the Alloys. Part Defects of the Lattice. Moscow, MISIS Publ., 1999, 384 p. (in Russ.)
  13. Gordon C. A., Granato A. V. Materials Science and Engineering A, 2004, vol. 370, pp. 83–87. https://doi.org/10.1016/j.msea.2003.08.077
  14. Shen T. D., Schwarz R. B. Applied Physics Letters, 2006, vol. 88, pp. 091903-1–091903-3. https://doi.org/10.1063/1.2172160 
  15. Tsyplakov A. N., Mitrofanov Yu. P., Khonik V. A., Kobelev N. P., Kaloyan A. A. Journal of Alloys and Compounds, 2015, vol. 618, pp. 449–454. https://doi.org/10.1016/j.jallcom.2014.08.198
  16. Mitrofanov Y. P., Wang D. P., Makarov A. S., Wang W. H., Khonik V. A. // Scientific Reports, 2016, vol. 6, p. 23026-1–23026-6. https://doi.org/10.1038/srep23026 
  17. Afonin G. V., Mitrofanov Yu. P., Makarov A. S., Kobelev N. P., Khonik V. A. // Journal of Non-Crystalline Solids, 2017, vol. 475, pp. 48–52. https://doi.org/10.1016/j.jnoncrysol.2017.08.029 

Downloads

Download data is not yet available.
Published
2019-03-06
How to Cite
Mitrofanov, Y. P. (2019). Features of the shear elasticity relaxation of metallic glasses. Condensed Matter and Interphases, 21(1), 84-92. https://doi.org/10.17308/kcmf.2019.21/719
Section
Статьи