Селективные ионообменные сорбенты в решении проблемы извлечения цезия из щелочных радиоактивных растворов. Обзор

  • Владимир Александрович Иванов Московский государственный университет имени М. В. Ломоносова, химический факультет, Ленинские горы, 1, строение 3, ГСП-1, Москва 119991, Российская Федерация https://orcid.org/0000-0001-6022-9569
  • Сергей Игоревич Каргов Московский государственный университет имени М. В. Ломоносова, химический факультет, Ленинские горы, 1, строение 3, ГСП-1, Москва 119991, Российская Федерация https://orcid.org/0000-0001-7834-6632
  • Ольга Тихоновна Гавлина Московский государственный университет имени М. В. Ломоносова, химический факультет, Ленинские горы, 1, строение 3, ГСП-1, Москва 119991, Российская Федерация https://orcid.org/0000-0001-5499-810X
Ключевые слова: изотоп цезий-137, высокоминерализованные щелочные растворы, ионный обмен, сорбция, селективность, резорцинформальдегидная смола, каликсарен, резорцинарен

Аннотация

В данном обзоре рассмотрены работы в области поиска и создания сорбентов для извлечения радиоактивного изотопа цезий-137 из высокоминерализованных сильно щелочных растворов, представляющих собой отходы атомных предприятий. Этот изотоп с периодом полураспада 30.2 лет вносит один из наиболее существенных вкладов в их радиоактивность. Показано, что ключевая роль в извлечении цезия из таких растворов отводится сорбентам фенольного типа, которые обладают способностью обменивать ионы на фенольных группах в щелочных растворах, при этом проявляют высокую селективность к цезию на фоне больших избытков ионов натрия и калия, позволяют
в режиме фильтрации обрабатывать большие потоки раствора, а также количественно и быстро элюировать сконцентрированный цезий небольшим объемом кислоты. Проведено сравнение селективности сорбентов, получаемых конденсацией фенола и двухатомных фенолов с формальдегидом, а также современных материалов, получаемых конденсацией каликсаренов и резорцинаренов с альдегидами. Показано, что последние не проявляют преимуществ в селективности и обладают более низкой химической устойчивостью. Поэтому ключевая роль в решении проблемы извлечения изотопа цезий-137 из растворов щелочного типа отведена материалам на основе
резорцинола. Проанализировано современное состояние проблемы. Объяснена природа повышенной селективности сорбентов фенольного типа к ионам цезия, а также то, что особая  «организованность» функциональных группировок каликсареновых и резорцинареновых смол не приводит к увеличению селективности по сравнению с обычными материалами на основе фенола и резорцинола

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Владимир Александрович Иванов, Московский государственный университет имени М. В. Ломоносова, химический факультет, Ленинские горы, 1, строение 3, ГСП-1, Москва 119991, Российская Федерация

д. х. н., профессор, химический факультет, МГУ имени М. В.
Ломоносова (Москва, Российская Федерация).

Сергей Игоревич Каргов, Московский государственный университет имени М. В. Ломоносова, химический факультет, Ленинские горы, 1, строение 3, ГСП-1, Москва 119991, Российская Федерация

д. х. н., профессор, химический факультет, МГУ имени М. В. Ломоносова
(Москва, Российская Федерация).

Ольга Тихоновна Гавлина, Московский государственный университет имени М. В. Ломоносова, химический факультет, Ленинские горы, 1, строение 3, ГСП-1, Москва 119991, Российская Федерация

к. х. н., н. с., химический факультет, МГУ имени М. В. Ломоносова
(Москва, Российская Федерация).

Литература

Gorshkov V. I., Ivanov V. A., Staina I. V. Selectivity of phenol-formaldehyde resins and separation of rare alkali metals. Reactive and Functional Polymers. 1998;38(2–3): 157–176.

https://doi.org/10.1016/S1381-5148(97)00165-X

Adams B. A., Holmes E. L. Adsorptive properties of synthetic resins. Journal of the Society of Chemical Industry. 1935;54(2): 1T–6Т. https://doi.org/10.1002/jctb.5000540214

Saldadze K. M., Pashkov A. B. Titov V. S. Ionexchange macromolecular compounds. Moscow: Goshimizdat Publ.; 1960. 356 p. (In Russ.)

Helfferich F. G. Ion Exchange. New York: McGraw-Hill; 1962. 624 p.

Helfferich F. G. Ion exchange: past, present, and future. In: Ion exchange: science and technology. Rodrigues A. E. (ed.). NATO ASI Series, vol. 107. Springer: Dordrecht; 1986. pp. 23–32.

https://doi.org/10.1007/978-94-009-4376-6_2

Dorfner K. Introduction to ion exchange and ion exchangers. In: Ion Exchangers. Dorfner K. (ed.). Berlin, New York: De Gruyter; 2011. pp. 7–188. https://doi.org/10.1515/9783110862430.7

Ivanov V. A., Gorshkov V. I., Gavlina O. T., Obrezkova M. V. Phenolic ion exchangers. An outstanding role in the development of ion-exchange chromatography and amazing properties. Sorptsionnye i khromatograficheskie protsessy. 2003;3(4): 375–391. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=18201451

Ivanov V. A., Gorshkov V. I. 70 years of the history of the production of ion-exchange resins. Sorptsionnye i khromatograficheskie protsessy. 2006;6(1): 5–31. (InRuss.). Available at: https://www.elibrary.ru/item.asp?id=12051620

Abrams I. M. Macroporous condensate resins as adsorbents. Product R&D. 1975;14(2): 108–112. https://doi.org/10.1021/i360054a011

Bellamy S. A., Zaganiaris E. Dusting off the phenolic resins. In: Ion exchange developments and applications: proceedings of IEX ‘96. Greig J. A. (ed.). Cambridge: Royal Society of Chemistry; 1996. pp. 274–281.

Shelkovnikova L. A., Gavlina O. T., Vitkina D. E., Shkol’nikov E. I., Ivanov V. A. Acid-base properties of phenol formaldehyde sorbents. Russian Journal of Physical Chemistry A. 2012;86(5): 825–831. https://doi.org/10.1134/s0036024412050329

Vakulenko V. A., Smirnov Yu. A., Kurochkina R. N. Method for obtaining an ion-exchange sorbent. RF patent 2015996 C1. Publ. 07.15.1994. (In Russ.). Availableat: https://www.freepatent.ru/patents/2015996

Kuznetsov I. A., Kustova L. V., Gorshkov V. I., Panchenkov G. M. Equilibrium of exchange of alkali metal cations on cation exchangers KU-1 and KU-2. Moscow University Chemistry Bulletin. 1963;2: 3–10. (In Russ.)

Gorshkov V. I., Korolev Yu. Z. Selectivity of sulfo- and sulfophenolic cations with respect to alkali metal ions. Moscow University Chemistry Bulletin. 1966;1: 16–20. (In Russ.)

Gorshkov V. I., Ivanova M. V., Ivanov V. A. Some features of the exchange of alkali metal cations on sulfophenol cation exchanger Russian Journal of Physical Chemistry A. 1977;51(8): 2084-2086. (In Russ.)

Gorshkov V. I., Ivanov V. A. Selectivity of sulfophenol cation exchanger KU-1 to alkali metal ions during exchange from alkaline and neutral solutions. Russian Journal of Physical Chemistry A. 1979;53(10): 2630–2632. (In Russ.)

Gorshkov V. I., Kuznetsov I. A., Panchenkov G. M., Kustova L. V. On the possibility of countercurrentonexchange separation of rubidium and cesium. Russian Journal of Inorganic Chemistry. 1963;8(12): 2795–2799. (In Russ.)

Gorshkov V. I., Panchenkov G. M., Savenkova N. P., Savostyanova S. U. Continuous countercurrent ion-exchange method for the separation of rubidium and cesium on the KU-1 cation exchanger. Russian Journal of Inorganic Chemistry. 1963;8(12): 2800–2805.(In Russ.)

Gorshkov V. I., Panchenkov G. M., Gulyaeva G. M., Dmitriev S. N., Savenkova N. P., Medvedev G. A. Continuous countercurrent ion-exchange method for the separation of rare alkali metals. In: Rare alkaline elements: collection of reports of the II All-Union Conference on rare alkaline elements, October 13–16, 1964 / V. E. Plushev (ed.). Novosibirsk: Nauka Publ.; 1967. p. 287–295. (In Russ.). Available at: https://www.studmed.ru/plyuschev-v-i-otv-red-redkie-schelochnye-elementy-sbornik-dokladov-iivsesoyuznogo-soveschaniya-po-redkim-schelochnym-elementam-1964-_47f6b69e170.html

Gorshkov V. I., Panchenkov G. M., Chumakov V. A. Continuous countercurrent ion-exchange method for the separation of rubidium and potassium. Russian Journal of Physical Chemistry A. 1964;38(5): 1358–1361. (In Russ.)

Gorshkov V. I., Sverdlov N. Sh. Ion exchange on phenol ionites. I. The equilibrium of the exchange of alkali metal ions. Russian Journal of Physical Chemistry A. 1975;49(10): 2724. (In Russ.)

Ivanov V. A., Gorshkov V. I., Staina I. V., Vakulenko V. A., Tarasov V. N. Ion exchange on phenolic ionites. III. The equilibrium of the exchange alkali metal ions. Russian Journal of Physical Chemistry A. 1991;65(8): 2184–2188. (In Russ.)

Shelkovnikova L. A., Gavlina O. T., Ivanov V. A., Gorshkov V. I. The influence of temperature on the ion exchange properties of phenolformaldehyde sorbents. Russian Journal of Physical Chemistry A. 2009;83(12): 2122–2126. https://doi.org/10.1134/s0036024409120218

Gorshkov V. I., Ivanov V. A., Staina I. V. Method for extracting cesium and/or rubidium from mixtures of alkaline elements. Auth. certificate USSR No. 1781313, prior 08/20/90. Bull. No. 46, 1992. (In Russ.). Available at: https://patenton.ru/patent/SU1781313A1

Gorshkov V. I., Ivanov V. A., Staina I. V. Purification of rare alkali metal compounds using phenolic ion exchangers. High-purity Substances. 1995;6: 86–93. (In Russ.)

Khamizov R., Muraviev D. N., Warshawsky A. Recovery of valuable minerals from seawater by ion exchange and sorption methods. In: Ion exchange and solvent extraction: a series of advances. Marinsky J. A., Marcus Y. (eds.). Boca Raton: CRC Press; 1995. pp. 93–148. https://doi.org/10.1201/9781003208846-3

Izatt S. R., Bruening R. L., Krakowiak K. E., Izatt R. M. The selective separation of anions and cations in nuclear waste using commercially available molecular recognition technology (MRT) products. In: Waste Management ‘03, Proc. Int. Conf., Tucson, AZ (USA), February 23–27, 2003. pp. 1–11. https://www.researchgate.net/publication/255274313

Johnson J. Course change for DOE cleanups? Chemical & Engineering News Archive. 2002;80(12): 33–35. https://doi.org/10.1021/cen-v080n012.p033

Girard J. Principles of environmental chemistry. Sudbury, MA: Jones and Bartlett Publishers; 2005. 677 p. 30. Comprehensive review of the hanford waste treatment plant flowsheet and throughput. Assessment conducted by an independent team of external experts. Chartered by the hanford waste treatment and immobilization plant

p

project at the direction of the US department of energy Ooffice of environmental management Washington, DC 20585. March 2005. Available at: http://w w w.em.doe.gov/Pages/ExternalTechReviews.aspx

Hamel W. F., Duncan G. M. The waste treatment plant, a work in progress. In: WM’06 Conference, February 26 – March 2, 2006, Tucson, AZ. Available at: http://archive.wmsym.org/2006/pdfs/6352.pdf

GAO-20-363. Report to Congressional Committees. Hanford waste treatment plan. May 2020. Режим доступа: https://www.gao.gov/assets/gao-20-363.pdf GAO-20-363. Report to Congressional Committees. Hanford waste treatment plan. May 2020. Available at: https://www.gao.gov/assets/gao-20-363.pdf

Ernest M. V., Bibler J. P., Whitley R. D., Wang N.‑H. L. Development of a carousel ion-exchange process for removal of cesium-137 from alkaline nuclear waste. Industrial & Engineering Chemistry Research. 1997;36(7): 2775–2788. https://doi.org/10.1021/ie960729+

Collins J. L, Egan B. Z., Anderson K. K., Chase C. W., Mrochek J. E., Bell J. T., Jernigan G. E. Evaluation of selected ion exchangers for the removal of cesium from MVST W-25 supernate. ORNL/TM-12938. Oak Ridge National Laboratory. 1995. Available at: https://digital.library.unt.edu/ark:/67531/metadc793495

Brooks K. P., Kim A. Y., Kurath D. E. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes. PNNL-11121. Pacific Northwest National Laboratory. 1996. Available at: https://digital.library.unt.edu/ark:/67531/metadc668523

Hubler T. L., Franz J. A., Shaw W. J., Hogan M. O., Hallen R. T., Brown G. N., Linehan J. C. Structure/ function studies of resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) copolymer ion exchange resins. PNNL-11347; Pacific Northwest National Laboratory. 1996. Available at: https://digital.library.unt.edu/ark:/67531/metadc685381

Roberts J. T., Holcomb R. R. A phenolic resin ion exchange process for decontaminating low-radioactivitylevel process water wastes. ORNL-3036. Oak Ridge National Laboratory. 1961. Available at: https://books.google.ru/books?id=gfZEgZZ404c C&pg=PP1

Bibler J. P., Wallace R. M., Bray L. A. Testing a new cesium-specific ion exchange resin for decontamination of alkaline high-activity waste. In: Waste Management ‘90, Proc. Int. Conf., Tucson, AZ (USA), February 25 – March 1, 1990. Available at: https://digital.library.unt.edu/ark:/67531/metadc1319943

Favre-Réguillon A., Dunjic B., Lemaire M., Chomel R. Synthesis and evaluation of resorcinolbased ion-exchange resins for the selective removal of cesium. Solvent Extraction and Ion Exchange.2001;19(1): 181–191. https://doi.org/10.1081/SEI-100001382

Pratt L. M., Szostak R., Khan I. M., Bibler J. Alkaline degradation of resorcinol-formaldehyde resins: solid-state NMR, thermal adsorption and desorption analysis, and molecular modeling. Journal of Macromolecular Science, Part A. 1997;34(2): 281–289. https://doi.org/10.1080/10601329708014955

Crawford C. L., Bibler N. E., Bibler J. P. An investigation of the radiolytic stability of a resorcinolformaldehyde ion exchange resin. In: Waste Management ‘94, Proc. Int. Conf., Tucson, AZ (USA), February 27 – March 3, 1994. Available at: https://digital.library.unt.edu/ark:/67531/metadc1313751

Shelkovnikova L. A., Gavlina O. T., Ivanov V. A. Stability of phenol-formaldehyde ion-exchange sorbents in aqueous solutions. Russian Journal of Physical Chemistry A. 2011;85(9): 1652–1659.

Berge A., Nilsen T.-N., Bjorgun J.-O., Ugelstad J. Process for preparing a dispersion and for preparing polymer particles. US Patent 5,677,373. Oct 14. 1997.

Niederl J. B., Vogel H. J. Aldehyde-resorcinol condensations. Journal of the American Chemical Society. 1940;62(9): 2512–2514. https://doi.org/10.1021/ja01866a067

Zinke A., Ziegler E., Zur Kenntnis des Härtungsprozesses von Phenol-Formaldehyd-Harzen, VII. Mitteilung. Berichte der deutschen chemischen Gesellschaft (A and B Series). 1941;74(11): 1729–1736. https://doi.org/10.1002/cber.19410741102

Zinke A., Ziegler E. Zur Kenntnis des Härtungsprozesses von Phenol-Formaldehyd-Harzen, X. Mitteilung. Berichte der deutschen chemischen Gesellschaft (A and B Series). 1944;77(3-4): 264–272. https://doi.org/10.1002/cber.19440770322

Izatt R. M., Lamb J. D., Hawkins R. T., Brown P. R., Izatt S. R., Christensen J. J. Selective M+–H+ coupled transport of cations through a liquid membrane by macrocyclic calixarene ligands. Journal of the American Chemical Society. 1983;105(7): 1782–1785. https://doi.org/10.1021/ja00345a016

Izatt S. R., Hawkins R. T., Christensen J. J., Izatt R. M. Cation transport from multiple alkali cation mixtures using a liquid membrane system containing a series of calixarene carriers. Journal of the American Chemical Society. 1985;107(1): 63–66. https://doi.org/10.1021/ja00287a012

Tarbet B. J., Maas G., Krakowiak K. E., Bruening R. L. Process for separating cesium from industrial streams containing other alkali metals using poly(hydroxyarylene) polymeric resins. US Patent No 788526. Issued August 1998 and US Patent No 5,789,496. August 4, 1998.

Hassan N. M., Adu-Wusu K. Cesium removal from Hanford tank waste solution using resorcinolformaldehyde

resin. Solvent Extraction and Ion Exchange. 2005;23(3): 375–389. https://doi.org/10.1081/SEI-200056519

Burgeson I. E., Deschane J. R., Cook B. J., Blanchard Jr. D. L., Weier D. L. Evaluation of elution parameters for cesium ion exchange resins. Separation Science and Technology. 2006;41(11): 2373–2390. https://doi.org/10.1080/01496390600744423

Fiskum S. K., Blanchard D. L., Steele M. J., Thomas K. K., Trang-Le T., Thorson M. R. Spherical resorcinol-ormaldehyde resin testing for cesium removal from Hanford tank waste simulant. Separation Science and Technology. 2006;41(11): 2461–2474. https://doi.org/10.1080/01496390600742740

Fiskum S. K., Arm S. T., Steele M. J., Thorson M. R. Spherical resorcinol-formaldehyde performance testing with Hanford tank waste. Solvent Extraction and Ion Exchange. 2008;26(4): 435–452. https://doi.org/10.1080/07366290802182691

Duignan M. R., Nash Ch. A., Punch T. M. High aspect ratio ion exchange resin bed – hydraulic results for spherical resin beads. Separation Science and Technology. 2008;43(9-10): 2943–2979. https://doi.org/10.1080/01496390802119051

Milyutin V. V., Nekrasova N. A., Kharitonov O. V., Firsova L. A., Kozlitin E. A. Sorption technologies in modern applied radiochemistry. Sorptsionnye i khromatograficheskie protsessy. 2016;16(3): 313–322. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=25919976

Milyutin V. V., Zelenin P. G., Kozlov P. V., Remizov M. B., Kondrutskii D. A. Sorption of cesium from alkaline polutions onto resorcinol-formaldehyde sorbents. Radiochemistry. 2019;61(6): 714–718. https://doi.org/10.1134/s1066362219060122

Tretyakov V. A., Kondrutsky D. A., Bobrov A. F., Milyutin V. V., Nesterov A. G. Method for obtaining a sorbent for the selective extraction of cesium. Patent RU 2521379. 02/13/2013 BI. 2014. No. 18. Available at: https://www.freepatent.ru/patents/2521379

Altshuler H. N., Abramova L. P., Malyshenko N. V., Shkurenko G. Yu., Ostapova E. V. Ion-exchange selectivity of a network calixarene-containing polymer obtained by the template synthesis on Na+, K+, and Ba2+matrices. Russian Chemical Bulletin. 2005;54(8): 1978–1981. https://doi.org/10.1007/s11172-006-0067-8

Shelkovnikova L. A., Kargov S. I., Gavlina O. T., Ivanov V. A., Al’tshuler G. N. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions. Russian Journal of Physical Chemistry A. 2013;87(1): 125–128. https://doi.org/10.1134/s0036024413010251

Kholkin A. I., Gindin L. M., Markova L. S., Shtilman I. S. Extraction of metals by phenols. Novosibirsk: Nauka Publ.; 1976. 189 p. (In Russ.)

Samanta S. K., Misra B. M. Ion exchange selectivity of aresorcinol-formaldehydepolycondensate resin for cesium in relation to other alkali metal ions. Solvent Extraction and Ion Exchange. 1995; 13(3): 575–589. https://doi.org/10.1080/07366299508918292

Kargov S. I., Shelkovnikova L. A., Ivanov V. A. The nature of ion exchange selectivity of phenolformaldehyde sorbents with respect to cesium and rubidium ions. Russian Journal of Physical Chemistry A. 2012;86(5): 860–866. https://doi.org/10.1134/s0036024412050159

Kapusta D. P., Meteleshko Y. I., Babchuk I. V., Khrenova M. G. Applications of high performance computing: Born–Oppenheimer molecular dynamics of complex formation in aqueous solutions. Supercomputing Frontiers and Innovations. 2018;5(3): 70–73. https://doi.org/10.14529/jsfi180312

Kulakova A. M., Khrenova M. G. Molecular mechanism of the cesium and rubidium selective binding to the calix[4]arene revealed by Born–Oppenheimer molecular dynamics simulation and electron density analysis. Mendeleev Communications. 2021;31(2): 185–187. https://doi.org/10.1016/j.mencom.2021.03.013

Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophysical Journal. 1994;66(4): 1061–1067. https://doi.org/10.1016/S0006-3495(94)80887-2

Glendening E. D., Feller D., Thompson M. A. An ab initio investigation of the structure and alkali metal cation selectivity of 18-Crown-6. Journal of the American Chemical Society. 1994;116(23): 10657–10669. https://doi.org/10.1021/ja00102a035

Gu J., Leszczynski J. Origin of Na+/K+ selectivity of the guanine tetraplexes in water: the theoretical rationale. The Journal of Physical Chemistry A. 2002;106(3): 529–532. https://doi.org/10.1021/jp012739g

Опубликован
2022-08-26
Как цитировать
Иванов, В. А., Каргов, С. И., & Гавлина, О. Т. (2022). Селективные ионообменные сорбенты в решении проблемы извлечения цезия из щелочных радиоактивных растворов. Обзор. Конденсированные среды и межфазные границы, 24(3), 287-299. https://doi.org/10.17308/kcmf.2022.24/9850
Раздел
Обзор