Влияние влажности бензойной кислоты на электропроводность ее расплавов
Аннотация
Целью данной работы являлось изучение влияния влажности бензойной кислоты на электропроводность ее расплавов.
Измерения проводились методом импедансной спектроскопии при температурах расплавов 160–200 °С в герметичной металлической ячейке. Использовалась бензойная кислота с различным содержанием влаги – в состоянии поставки, после сушки над прокаленным хлоридом кальция и после выдержки в условиях влажности воздуха 100 %.
Установлено, что при увеличении содержания влаги в бензойной кислоте значения электропроводности закономерно увеличиваются (различие проводимости наиболее влажного и наиболее сухого образцов составляет примерно 2.5 раза).
Полученные результаты важны для понимания механизма процессов протонного обмена на кристаллах ниобата лития в расплаве бензойной кислоты и имеют практическое значение для формирования протонообменных волноводов со стабильными характеристиками.
Скачивания
Литература
Korkishko Yu. N., Fedorov V. A. Structural phase diagram of proton-exchange HxLi1-xNbO3 waveguides in lithium niobate crystals. Crystallography Reports. 1999;44(2): 237–246. Available at: https://www.elibrary.ru/item.asp?id=13324513
Suchoski P. G., Findakly T. K., Leonberger F. J. Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation. Optics Letters. 1988;13(11): 1050–1052. https://doi.org/10.1364/OL.13.001050
Korkishko Y. N., Fedorov V. A., Feoktistova O. Y. LiNbO3 optical waveguide fabrication by hightemperature proton exchange. Journal of Lightwave Technology. 2000;18(4): 562–568. https://doi.org/10.1109/50.838131
Korkishko Yu. N., Fedorov V. A. Structural phase diagram of HxLi1–xNbO3 waveguides: the correlation between optical and structural properties. IEEE Journal of Selected Topics in Quantum Electronics. 1996;2(2): 187–196. https://doi.org/10.1109/2944.577359
Korkishko Yu. N., Fedorov V. A., De Micheli M. P., Baldi P. Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate. Applied Optics. 1996;35(36): 7056–7060. https://doi.org/10.1364/AO.35.007056
Kichigin V. I., Petukhov I. V., Mushinskii S. S., Karmanov V. I., Shevtsov D. I. Electrical conductivity and IR spectra of molten benzoic acid. Russian Journal of Applied Chemistry. 2011;84(12): 2060–2064. https://doi.org/10.1134/S1070427211120081
Petukhov I. V., Kichigin V. I., Mushinskii S. S., Minkin A. M., Shevtsov D. I. Effect of water contained in benzoic acid on the proton exchange process, the structure and the properties of proton-exchange waveguides in lithium niobate single crystals. Condensed Matter and Interphases. 2012;14(1): 119–123. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=17711946
Mushinsky S. S, Minkin A. M., Kichigin V. I., Petukhov I. V., Shevtsov D. I., Malinina L. N., Volyntsev A. B., Shur V. Ya. Water effect on proton exchange of X-cut lithium niobate in the melt of benzoic acid. Ferroelectrics.
;476(1): 84–93. https://doi.org/10.1080/00150193.2015.998530
Rambu A. P., Apetrei A. M., Doutre F., Tronche H., De Micheli M. P., Tascu S. Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange. Journal of Lightwave Technology. 2018;36(13): 2675–2684. https://doi.org/10.1109/JLT.2018.2822317
Rambu A. P., Apetrei A. M., Tascu S. Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange. Optics and Laser Technology. 2019;118: 109–114. https://doi.org/10.1016/j.optlastec.2019.05.005
Orazem M. E., Tribollet B. Electrochemical impedance spectroscopy. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008. 523 p. https://doi.org/10.1002/9780470381588
Sluyters-Rehbach M. Impedances of electrochemical systems: terminology, nomenclature and representation.
Part I: Cells with metal electrodes and liquid solutions (IUPAC Recommendations 1994). Pure Appl. Chem. IUPAC Standards Online 1994;66(9) 1831–1891. https://doi.org/10.1351/pac199466091831
Faidi S. E., Scantlebury J. D. The limitations of the electrochemical impedance technique in the study of electrode reactions occurring in low conductivity media. Journal of The Electrochemical Society. 1989;136(4): 990–995. https://doi.org/10.1149/1.2096898
Yezer B. A., Khair A. S., Sides P. J., Prieve D. C. Use of electrochemical impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids. Journal of Colloid and Interface Science. 2015; 449: 2–12. https://doi.org/10.1016/j.jcis.2014.08.052
SatyanarayanaRaju C. H. S. R. V., Krishnamurthy C. V. Charge migration model for the impedance response of DI water. AIP Advances. 2019;9: 035141. https://doi.org/10.1063/1.5078709
Lensch H., Bastuck M., Baur T., Schütze A., Sauerwald T. Impedance model for a high-temperature ceramic humidity sensor. Journal of Sensors and Sensor Systems. 2019;8: 161–169.
https://doi.org/10.5194/jsss-8-161-2019
Schnitzler E. G., Jäger W. The benzoic acid–water complex: a potential atmospheric nucleation precursor studied using microwave spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 2014;16(6): 2305–2314. https://doi.org/10.1039/c3cp54486a
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.