The effect of the moisture content in benzoic acid on the electrical conductivity of its melts

  • Vladimir.I Kichigin Perm State University, 15 Bukireva str., Perm 614990, Russian Federation https://orcid.org/0000-0002-4668-0756
  • Igor V. Petukhov Perm State University, 15 Bukireva str., Perm 614990, Russian Federation
  • Andrey R. Kornilitsyn Perm State University, 15 Bukireva str., Perm 614990, Russian Federation https://orcid.org/0000-0002-8267-0168
  • Sergey S. Mushinsky Perm Scientific Industrial Instrument-Making Company, 106 25th October str., Perm 614990, Russian Federation
Keywords: Electrical conductivity, Benzoic acid, Melt, Moisture, Proton exchange

Abstract

The purpose of our study was to analyse the effect of the moisture content in benzoic acid on the electrical conductivity of its melts.
The measurements were performed using impedance spectroscopy in a hermetically sealed metal cell with the temperature of the melts being 160–200 °С. Samples of benzoic acid with different moisture content were used: (i) as-received benzoic acid; (ii) acid dried over anhydrous calcium chloride; (iii) acid exposed to air at 100 % relative humidity.
The study demonstrated that electrical conductivity increased with an increase in the amount of moisture in the acid (the conductivity of the sample with the highest moisture content was about 2.5 times higher than that of the driest sample).
The results obtained are of importance for understanding the mechanisms of proton exchange processes on lithium niobate crystals and can be used for the production of proton-exchange waveguides with stable characteristics.

Downloads

Download data is not yet available.

Author Biographies

Vladimir.I Kichigin, Perm State University, 15 Bukireva str., Perm 614990, Russian Federation

Cand. Sci. (Chem.), Research
Fellow, Research Fellow at the Department of Physical
Chemistry, Perm State University (Perm, Russian
Federation).

Igor V. Petukhov, Perm State University, 15 Bukireva str., Perm 614990, Russian Federation

Cand. Sci. (Chem.), Associate
Professor at the Department of Physical Chemistry,
Perm State University (Perm, Russian Federation).

Andrey R. Kornilitsyn, Perm State University, 15 Bukireva str., Perm 614990, Russian Federation

Fourth year student, Faculty
of Chemistry; Perm State University (Perm, Russian
Federation).

Sergey S. Mushinsky, Perm Scientific Industrial Instrument-Making Company, 106 25th October str., Perm 614990, Russian Federation

Head of department, Perm
Scientific Industrial Instrument-Making Company
(Perm, Russian Federation).

References

Korkishko Yu. N., Fedorov V. A. Structural phase diagram of proton-exchange HxLi1-xNbO3 waveguides in lithium niobate crystals. Crystallography Reports. 1999;44(2): 237–246. Available at: https://www.elibrary.ru/item.asp?id=13324513

Suchoski P. G., Findakly T. K., Leonberger F. J. Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation. Optics Letters. 1988;13(11): 1050–1052. https://doi.org/10.1364/OL.13.001050

Korkishko Y. N., Fedorov V. A., Feoktistova O. Y. LiNbO3 optical waveguide fabrication by hightemperature proton exchange. Journal of Lightwave Technology. 2000;18(4): 562–568. https://doi.org/10.1109/50.838131

Korkishko Yu. N., Fedorov V. A. Structural phase diagram of HxLi1–xNbO3 waveguides: the correlation between optical and structural properties. IEEE Journal of Selected Topics in Quantum Electronics. 1996;2(2): 187–196. https://doi.org/10.1109/2944.577359

Korkishko Yu. N., Fedorov V. A., De Micheli M. P., Baldi P. Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate. Applied Optics. 1996;35(36): 7056–7060. https://doi.org/10.1364/AO.35.007056

Kichigin V. I., Petukhov I. V., Mushinskii S. S., Karmanov V. I., Shevtsov D. I. Electrical conductivity and IR spectra of molten benzoic acid. Russian Journal of Applied Chemistry. 2011;84(12): 2060–2064. https://doi.org/10.1134/S1070427211120081

Petukhov I. V., Kichigin V. I., Mushinskii S. S., Minkin A. M., Shevtsov D. I. Effect of water contained in benzoic acid on the proton exchange process, the structure and the properties of proton-exchange waveguides in lithium niobate single crystals. Condensed Matter and Interphases. 2012;14(1): 119–123. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=17711946

Mushinsky S. S, Minkin A. M., Kichigin V. I., Petukhov I. V., Shevtsov D. I., Malinina L. N., Volyntsev A. B., Shur V. Ya. Water effect on proton exchange of X-cut lithium niobate in the melt of benzoic acid. Ferroelectrics.

;476(1): 84–93. https://doi.org/10.1080/00150193.2015.998530

Rambu A. P., Apetrei A. M., Doutre F., Tronche H., De Micheli M. P., Tascu S. Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange. Journal of Lightwave Technology. 2018;36(13): 2675–2684. https://doi.org/10.1109/JLT.2018.2822317

Rambu A. P., Apetrei A. M., Tascu S. Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange. Optics and Laser Technology. 2019;118: 109–114. https://doi.org/10.1016/j.optlastec.2019.05.005

Orazem M. E., Tribollet B. Electrochemical impedance spectroscopy. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008. 523 p. https://doi.org/10.1002/9780470381588

Sluyters-Rehbach M. Impedances of electrochemical systems: terminology, nomenclature and representation.

Part I: Cells with metal electrodes and liquid solutions (IUPAC Recommendations 1994). Pure Appl. Chem. IUPAC Standards Online 1994;66(9) 1831–1891. https://doi.org/10.1351/pac199466091831

Faidi S. E., Scantlebury J. D. The limitations of the electrochemical impedance technique in the study of electrode reactions occurring in low conductivity media. Journal of The Electrochemical Society. 1989;136(4): 990–995. https://doi.org/10.1149/1.2096898

Yezer B. A., Khair A. S., Sides P. J., Prieve D. C. Use of electrochemical impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids. Journal of Colloid and Interface Science. 2015; 449: 2–12. https://doi.org/10.1016/j.jcis.2014.08.052

SatyanarayanaRaju C. H. S. R. V., Krishnamurthy C. V. Charge migration model for the impedance response of DI water. AIP Advances. 2019;9: 035141. https://doi.org/10.1063/1.5078709

Lensch H., Bastuck M., Baur T., Schütze A., Sauerwald T. Impedance model for a high-temperature ceramic humidity sensor. Journal of Sensors and Sensor Systems. 2019;8: 161–169.

https://doi.org/10.5194/jsss-8-161-2019

Schnitzler E. G., Jäger W. The benzoic acid–water complex: a potential atmospheric nucleation precursor studied using microwave spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 2014;16(6): 2305–2314. https://doi.org/10.1039/c3cp54486a

Published
2022-08-26
How to Cite
Kichigin, V., Petukhov, I. V., Kornilitsyn, A. R., & Mushinsky, S. S. (2022). The effect of the moisture content in benzoic acid on the electrical conductivity of its melts. Condensed Matter and Interphases, 24(3), 315-320. https://doi.org/10.17308/kcmf.2022.24/9853
Section
Original articles