Получение стандартных газовых и жидких сред хромато-десорбционным способом
Аннотация
В работе представлен анализ современных техник получения газовых и жидких сред с заданной концентрацией аналитов хромато-десорбционным способом. Показаны возможности динамического и дискретного статического способа, подходы миниатюризации и автоматизации процесса. На примере жирных кислот (ЖК) представлены возможности использования монолитных хромато-десорбционных систем (МХДС) для получения стандартных жидких сред. В работе проведено сравнение степени извлечения ЖК из МХДС на основе различных полимерных материалов в режиме статической экстракции при температурах 25, 50 и 80°C и давлении 17-18 МПа. Показано, что извлечение ЖК из МХДС на основе полиэфирной смолы с погрешностью поддержания постоянных концентраций, не превышающей 10%, достигается при 5-6 погружении в экстракционную среду. Установлены диапазоны определяемых концентраций ЖК в н-октановых экстрактах, полученных в результате исследований МХДС в статическом режиме экстракции: 3-17 г/м3, 6-36 г/м3, 8-66 г/м3 для тетрадекановой кислоты, 3-29 г/м3, 6-58 г/м3, 10-90 г/м3 для пентадекановой кислоты, 4-32 г/м3, 8-69 г/м3, 12-99 г/м3для гексадекановой кислоты, 4-42 г/м3, 10-89 г/м3, 15-143 г/м3 для октадекановой кислоты.
Сравнение результатов анализа растворов, полученных в результате исследований МХДС на основе различных полимерных материалов в статическом режиме, позволяет заключить, что с использованием МХДС на основе полиэфирной смолы обеспечивается возможность получения высококонцентрированных растворов ЖК в неполярных растворителях. Важно отметить, что для выхода МХДС на основе полиэфирной смолы на рабочий квазистационарных режим необходимо затратить больше времени по сравнению с образцами МХДС на основе эпоксидной смолы, где выход на плато квазистационарных концентраций наблюдался со 2, а не с 5-6 погружения. Для МХДС подобной конфигурации время стабильной работы, за счет слабой устойчивости к неполярному органическому растворителю и интенсивного извлечения ЖК, заметно сокращается.
Скачивания
Литература
Vitenberg A.G., Ioffe B.V. Gazovaja jekstrakcija v hromatograficheskom an-alize: Parofaznyj analiz i rodstvennye metody. Leningrad, Himija Publ., 1982, 280 p. (In Russ.)
Vitenberg A.G. Staticheskij parofaznyj gazohromatograficheskij analiz. Fiziko-himicheskie osnovy i oblasti prime-nenija, Russian Journal of General Chemis-try, 2003; 47(1): 7-22. (In Russ.)
Vitenberg A.G., Equilibrium model in the description of gas extraction and head-space analysis, Journal of analytical chem-istry, 2003; 58(1): 2-15. https://doi.org/10.1023/A:1021873828994.
Moskvin L.N., Nikitina T.G. Mem-brane methods of substance separation in analytical chemistry, Journal of analytical chemistry, 2004; 59(1): 2-16. https://doi.org/10.1023/B:JANC.0000011661.47796.b2
Vakh C., Pochivalov A., Andruch V., Moskvin L., Bulatov A. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction proce-dure: liquid chromatographic determina-tion of ofloxacin in human urine samples, Analytica Chimica Acta, 2016; 907: 54-59. https://doi.org/10.1016/j.aca.2015.12.004 (In Russ.)
Moskvin L.N, Rodinkov O.V. Contin-uous chromatomembrane headspace analy-sis, Journal of Chromatography A, 1996; 725(2): 351-359. https://doi.org/10.1016/0021-9673(95)00991-4
Moskvin L.N., Rodinkov O.V., Kartu-zov A.N. Hromatomembrannyj metod razdelenija veshhestv i ego analiticheskie vozmozhnosti, Journal of analytical chem-istry, 1996; 51(8): 835. (In Russ.)
Postnov V.N., Rodinkov O.V., Mos-kvin L.N., Novikov A.G., Bugaichenko A.S., Krokhina O.A. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration, Russian chemical reviews, 2016; 85(2): 115-138. https://doi.org/10.1070/RCR4551
Stoljarov B.V., Karcova L.A. Sravnitel'naja jeksperimental'naja ocenka poljarnosti i selektivnosti nepodvizhnyh faz v gazovoj hromatografii s pomoshh'ju kon-stant Rorshnajdera-Mak-Rejnol'dsa i na osnove termodinamicheskih harakteristik, Journal of analytical chemistry, 1984; 39(5): 883. (In Russ.)
Makarov E.D., Stolyarov B.V., Bychinskaya I.V., Zenkevich I.G., Berezkin V.G. New design of a sorption device for the preconcentration of organic impurities and their subsequent determination by gas chromatography, Journal of analytical chemistry, 2005; 60(1): 6-11. https://doi.org/10.1007/s10809-005-0003-3
Přikryl P., Ševčík J., Kubinec R., Jurdáková H., Ostrovský I., Soják L., Be-rezkin V. Comparison of needle concentra-tor with SPME for GC determination of benzene, toluene, ethylbenzene, and xy-lenes in aqueous samples, Chromatograph-ia, 2006; 64(1-2): 65-70. https://doi.org/10.1365/s10337-006-0800-3
Jurdáková H., Kubinec R., Jurčiši-nová M., Krkošová Z., Blaško J., Ostrovský I., Soják L., Berezkin V.G. Gas chromatog-raphy analysis of benzene, toluene, ethylbenzene and xylenes using newly de-signed needle trap device in aqueous sam-ples, Journal of Chromatography A, 2008; 1194(2): 161-164. https://doi.org/10.1016/j.chroma.2008.04.065
Platonov I.A., Kolesnichenko I.N., Rodinkov O.V., Gorbacheva A.R., Moskvin L.N. Methods and devices for the prepara-tion of standard gas mixtures, Journal of analytical chemistry, 2018; 73(2): 109-127. https://doi.org/10.1134/S1061934818020090
Platonov I.A., Kolesnichenko I.N., Novikova E.A., Mukhanova I.M. Polu-chenie gazovykh smesei izvestnogo sostava dinamicheskimi metodami, Sorbtsionnye i Khromatograficheskie Protsessy, 2017; 17(3): 378-387. https://doi.org/10.17308/sorpchrom.2017.17/391. (In Russ.)
Slominska M., Konieczka P., Na-miesnik J. New developments in prepara-tion and use of standard gas mixtures, Trends Anal. Chem., 2014; 62: 135-143. https://doi.org/10.1016/j.trac.2014.07.013
Slominska М., Konieczka P., Na-miesnik J. Standard gas mixtures – indis-pensable reference materials in the analysis of gaseous media, Trends Anal. Chem., 2010; 29(5): 419-429. https://doi.org/10.1016/j.trac.2010.02.003
Naganowska-Nowak A., Konieczka P., Przyjazny A., Namiesnik J. Develop-ment of techniques of generation of gase-ous standard mixtures, Crit. Rev. Anal. Chem., 2005; 35(1): 31-35. https://doi.org/10.1080/10408340590947916
Fijalo C., Dymerski T., Gebicki J., Namiesnik J. Devices for the Production of Reference Gas Mixtures, Crit. Rev. Anal. Chem., 2016; 46(5): 361-373. https://doi.org/10.1080/10408347.2014.953672
Berezkin V.G., Platonov I.A., Smygina I.N. Hromato-desorbcionnyj sposob poluchenija potoka gaza, soderzhashhego mikroprimesi letuchih soedinenij, Himija i himicheskaja tehnologija, 2007; 50(8): 22-24. (In Russ.)
Vitenberg A.G., Konopel'ko L.A. Gas-chromatographic headspace analysis: metrological aspects, Journal of analytical chemistry, 2011; 66(5): 438-457. https://doi.org/10.1134/S106193481103018X
Platonov I.A., Kolesnichenko I.N., Lange P.K., Hromato-desorbcionnyj sposob prigotovlenija graduirovochnyh gazovyh smesej letuchih organicheskih soedinenij, Metrologija, 2016; 4: 29-36. (In Russ.)
Berezkin V.G., Platonov I.A., Lep-skij M.V., Ismagilov D.R., Onuchak L.A. Dinamicheskij sposob poluchenija parogazovyh potokov letuchih organich-eskih soedinenij v inertnom gaze, Vestnik SamGU, 2002; S: 115-123. (In Russ.)
Berezkin V.G., Platonov I.A., Ismagilov D.R., Onuchak L.A. Dinamich-eskij sposob poluchenija parogazovyh smesej s postojannymi koncentracijami letuchih organicheskih soedinenij v uslovi-jah kontakta gazovoj fazy s regenerirue-mym potokom zhidkogo rastvora, Sorbtsionnye i khromatograficheskie protsessy, 2006; 6(4): 591-595. (In Russ.)
Berezkin V.G., Platonov I.A., Smygina I.N. Poluchenie potokov mikro-koncentracij letuchih organicheskih soedi-nenij, Jekologija i promyshlennost' Rossii, 2007; 12: 48-49. (In Russ.)
Berezkin V.G., Platonov I.A., Arut-junov Ju.I., Smygina I.N., Nikitchenko N.V. Patent RF, no. 2324173, 2008. (In Russ.)
Berezkin V.G., Platonov I.A., Arut-junov Ju.I., Smygina I.N., Nikitchenko N.V. Patent RF, no. 2324174, 2008. (In Russ.)
Berezkin V.G., Platonov I.A., Arut-junov Ju.I., Kolesnichenko I.N., Nikitchen-ko N.V. Patent RF, no. 2465584, 2012. (In Russ.)
Platonov I.A., Kolesnichenko I.N., Platonov V.I., Lobanova M.S., Miheenkova A.Je. Mikroanaliticheskie sistemy dlja opredelenija jendogennyh biomarkerov v vydyhaemom vozduhe, Sovremennaja nau-ka: aktual'nye problemy i puti ih reshenija, 2016; 1(23): 41-46. (In Russ.)
Platonov I.A., Kolesnichenko I.N., Lobanova M.S., Miheenkova A.Je. Hroma-to-desorbcionnye mikrosistemy dlja kolichestvennogo opredelenija bi-omarkerov serdechno-sosudistyh zabolevanij v vydyhaemom vozduhe, Sov-remennaja nauka: aktual'nye problemy i puti ih reshenija, 2017; 1(32): 14-16. (In Russ.)
Platonov I.A., Kolesnichenko I.N., Lobanova M.S., Miheenkova A.Je. Analit-icheskie mikrosistemy dlja koncentrirovan-ija sledovyh kolichestv veshhestv iz prob vydyhaemogo vozduha, Sovremennaja nauka: aktual'nye problemy i puti ih resh-enija, 2017; 1(32): 17-18. (In Russ.)
Kolesnichenko I.N., Anikina M.A., Platonov I.A. Optimizacija uslovij nasysh-henija i predpodgotovki hromato-desorbcionnyh mikrosistem dlja polucheni-ja gazovyh smesej acetona, Sorbtsionnye i khromatograficheskie protsessy, 2020; 20(4): 426-433. https://doi.org/10.17308/sorpchrom.2020.20/2949. (In Russ.)
Platonov I.A., Kolesnichenko I.N., Novikova E.A., Pavlova L.V., Lobanova M.S., Mikheenkova A.E. Preparation of calibration gas mixtures by the chromato-desorption method for increasing the accu-racy of quantitative determination of bio-genic pentane in expired air, Measurement techniques, 2017; 60(8): 848-852. https://doi.org/10.1007/s11018-017-1281-5
Pavlova L.V., Platonov I.A., Ni-kitchenko N.V., Kolesnichenko I.N. Prime-nenie parofaznogo analiza dlja poluchenija obshhego obraza list'ev jevkalipta pru-tovidnogo, Himija rastitel'nogo syr'ja, 2016; 3: 135-146. (In Russ.)
Pavlova L.V., Platonov I.A., Kole-snichenko I.N., Novikova E.A. Corbcionnye mikrotrubki kak obrazcy sostava letuchih organicheskih soedinenij na primere romashki aptechnoj, Sorbtsionnye i khromatograficheskie protsessy, 2018; 18(5): 736-744. https://doi.org/10.17308/sorpchrom.2018.18/600 (In Russ.)
Platonov I.A., Novikova E.A., Kole-snichenko I.N., Karsunkina A.S., Margarjan A.Je. Issledovanie sorbcionnyh processov v hromato-desorbcionnyh sistemah na osnove nanostrukturirovannogo polimernogo sorbenta Polisorb-1, Sorbtsionnye i khro-matograficheskie protsessy, 2023; 23(4): 495-503. https://doi.org/10.17308/sorpchrom.2023.23/11543. (In Russ.)
Platonov I. A., Muhanova I. M., Kolesnichenko I. N., Bryksin A. S. Izuchenie vozmozhnosti poluchenija post-ojannyh koncentracij organorastvorimyh analitov v organicheskih sredah v processe jekspluatacii monolitnyh hromato-desorbcionnyh system, Sorbtsionnye i khromatograficheskie protsessy, 2021; 23(2): 158-170. https://doi.org/10.17308/sorpchrom.2023.23/11140 (In Russ.)
Platonov I.A., Bryksin A.S., Mu-hanova I.M., Kolesnichenko I.N. Sravnitel'naja ocenka raboty monolitnyh hromato-desorbcionnyh sistem v statich-eskom i dinamicheskom rezhimah jekstrakcii, Sorbtsionnye i khromato-graficheskie protsessy. 2023; 23(4): 504-513. https://doi.org/10.17308/sorpchrom.2023.23/11544 (In Russ.)
Vitenberg A.G., Dobryakov Y.G., Gromysh E.M. Preparation of stable gas mixtures with microconcentrations of vola-tile substances in vapor-phase sources at elevated pressures, Journal of analytical chemistry, 2010; 65(12): 1284-1290. https://doi.org/10.1134/S1061934810120142 (In Russ.)
Noel R., Sanderson A. Materials for Selective Separations and Other Technolo-gies, Cellulosics, 1993; p. 24.
Svec F., Tennikova T.B., Deyl Z. Monolithic materials: preparation, proper-ties and applications. Amsterdam. Elsevier, 2003, 780 p.
Viklund C., Svec F., Fréchet J.M.J., Irgum K. Monolithic, “Molded”, Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry: Control of Porous Properties during Polymerization, Chem. Mater. 1996; 8(3): 744-750. https://doi.org/10.1021/cm950437j
Kubín M., Špaček P., Chromeček R. Gel permeation chromatography on porous poly(ethylene glycol methacrylate), Col-lection of Czechoslovak Chemical Commu-nications, 1967; 32(11): 3881-3887. https://doi.org/10.1135/cccc19673881
Végvári A., Földesi A., Hetényi C., Kocnegarova O., Schmid M.G., Kudirkaite V., Hjertén S. A new easy-to-prepare ho-mogeneous continuous electrochromato-graphic bed for enantiomer recognition, Electrophoresis, 2000; 21(15): 3116-3125. https://doi.org/10.1002/1522-2683(20000901)21:15<3116::AID-ELPS3116>3.0.CO;2-5.
Ross W.D., Jefferson R.T. In Situ–Formed Open-Pore Polyurethane as Chro-matography Supports, Journal of Chroma-tographic Science, 1970; 8(7): 386-389. https://doi.org/10.1093/chromsci/8.7.386
Schnecko H., Bieber O. Foam filled columns in gas chromatography, Chroma-tographia, 1971; 4(3): 109-112. https://doi.org/10.1007/BF02311199
Ross W.D., Hileman F.D., Sievers G.G., Hess G.G. In situ preparation and evaluation of open pore polyurethane chromatographic columns, Analytical Chemistry, 1973; 45(7): 1126-1130. https://doi.org/10.1021/ac60329a029
Lynn T.R., Rushneck D.R., Cooper A.R. High Resolution-Low Pressure Liquid Chromatography, Journal of Chromato-graphic Science, 1974; 12(2): 76-79. https://doi.org/10.1093/chromsci/12.2.76
Dandeneau R.D., Zerenner E.H. An investigation of glasses for capillary chromatography, Journal of High Resolution Chromatography, 1979; 2(6): 351-356. https://doi.org/10.1002/jhrc.1240020617
Hjertén S., Liao J.-L., Zhang R. High-performance liquid chromatography on continuous polymer beds, Journal of Chromatography A, 1989; 473: 273-275. https://doi.org/10.1016/s0021-9673(00)91309-8
Janča J., Pokorný S., Vilenchik L.Z., Belenkii, B.G. Concentration effects in gel permeation chromatography, Journal of Chromatography A, 1981; 211(1): 39-44. https://doi.org/10.1016/S0021-9673(00)81171-1
Tennikova T.B., Horák D., Švec F., Kolár J., Čoupek J., Trushin S. A., Belen-kii, B.G. Hydrolysed macroporous glycidyl methacrylate-ethylene dimethacrylate co-polymer sorbent for size-exclusion high-performance liquid chromatography of syn-thetic polymers and biopolymers, Journal of Chromatography A, 1988; 435: 357-362. https://doi.org/10.1016/s0021-9673(01)82196-8
Tennikova T.B., Horák D., Švec F., Tennikov M. B., Kever E.E., Belenkii B.G. Hydrolyzed macroporous glycidyl methac-rylate-ethylene dimethacrylate copolymer with narrow pore size distribution, Journal of Chromatography A, 1989; 475(2): 187-194. https://doi.org/10.1016/s0021-9673(01)89674-6
Mal’tsev V.G., Nasledov D.G., Trushin S.A., Tennikova T.B., Vinogrado-va L.V., Volokitina I.N., Belenkii, B.G. High-performance liquid chromatography of proteins on short capillary columns, Journal of High Resolution Chromatog-raphy, 1990; 13(3): 185-189. https://doi.org/10.1002/jhrc.1240130310
Belenkii B.G., Tennikova T.B., Svec F. High-Performance Membrane Chromatography. A Novel Method of Protein Sepa-ration, Journal of Liquid Chromatography, 1990; 13(1): 63-70. https://doi.org/10.1080/01483919008051787
Tennikova T.B., Bleha M., Švec F., Almazova T.V., Belenkii B.G. High-performance membrane chromatography of proteins, a novel method of protein separa-tion, Journal of Chromatography A, 1991; 555(1-2): 97-107. https://doi.org/10.1016/s0021-9673(01)87170-3
Svec F., Frechet J.M.J. Continuous rods of macroporous polymer as high-performance liquid chromatography sepa-ration media, Analytical Chemistry, 1992; 64(7): 820-822. https://doi.org/10.1021/ac00031a022
Viktorova E.N., Kanat'eva A.YU., Korolev A.A., Kurganov A.A. Divinylben-zene-based monolithic capillary columns in capillary liquid chromatography, Russian journal of physical chemistry A, 2007; 81(3): 428-432. https://doi.org/10.1134/S0036024407030247
Viktorova E.N., Korolev A.A., Ibra-gimov T.R., Kanat'eva A.Y., Kurganov A.A. Monolithic capillary columns based on ethylene glycol dimethacrylate for sepa-ration of polymers by molecular mass, Pol-ymer science, Series A, 2013; 55(3): 204-211. https://doi.org/10.1134/S0965545X13030085
Liang Y., Zhang L., Zhang Y. Recent advances in monolithic columns for protein and peptide separation by capillary liquid chromatography, Analytical and Bioanalyt-ical Chemistry, 2012; 405(7): 2095-2106. https://doi.org/10.1007/s00216-012-6570-x
Eeltink S., Wouters S., Dores-Sousa J.L., Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and pep-tides, Journal of Chromatography A, 2016; 1498: 8-21. https://doi.org/10.1016/j.chroma.2017.01.002
Kanatyeva A.YU., Kurganov A.A., Viktorova E.N., Korolev A.A. Monolithic stationary phases in liquid and gas chroma-tography, Russian chemical reviews, 2008; 77(4): 373-379. https://doi.org/10.1070/RC2008v077n04ABEH003754
Zolotov Yu.A. Osnovy analiticheskoi khimii. M., Vysshaya shkola Publ., 2004, pt. 1, 361 p. (In Russ.)
Adepu S., Ramakrishna S. Con-trolled Drug Delivery Systems: Current Status and Future Directions, Molecules. 2021; 26(19): 5905-5953. https://doi.org/10.3390/molecules26195905
Wang L, Liu X. Sustained Release Technology and Its Application in Environmental Remediation: A Review, Environmental Research and Public Health. 2019; 16(12): 2153-2166. https://doi.org/10.3390/ijerph16122153
Dai Y.-Q., Qin G., Geng S.-Y., Yang B., Xu Q., Wang J.-Y., Photo-responsive release of ascorbic acid and catalase in CDBA-liposome for commercial applica-tion as a sunscreen cosmetic, RSC Adv. 2012; 2(8): 3340-3346. https://doi.org/10.1039/c2ra01171a
Xue Y., Tian J., Tian W., Gong P., Dai J., Wang X., Significant fluorescence enhancement of spiropyran in colloidal dispersion and its light-induced size tuna-bility for release control, J. Phys. Chem. C. 2015; 119(35): 20762-20772. https://doi.org/10.1021/acs.jpcc.5b06905
Grigor'eva M.V. Polimernye sistemy s kontroliruemym vysvobozhdeniem bio-logicheski aktivnyh soedinenij, Biotehnologija. 2011; 4(2): 9-23.
Laaksonen T.J., Laaksonen H.M., Hirvonen J.T., Murtomäki L. Cellular au-tomata model for drug release from binary matrix and reservoir polymeric devices, Biomaterials. 2009; 30(10): 1978-1987. https://doi.org/10.1016/j.biomaterials.2008.12.028
Bajpai A.K., Shukla S.K., Bhanu S., Kankane S. Responsive polymers in con-trolled drug delivery, Progress in Polymer Science. 2008; 33(11): 1088-1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005
Grassi M., Grassi G. Mathematical Modelling and Controlled Drug Delivery: Matrix Systems, Current Drug Delivery. 2005; 2(1): 97-116. https://doi.org/10.2174/1567201052772906
Grassi M., Lapasn R., Pricl S. Modeling of drug release from a swellable ma-trix, Chemical Engineering Communica-tions. 1998; 169(1): 79-109. https://doi.org/10.1080/00986449808912722
Hersel U., Dahmen C., Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Bio-materials. 2003; 24(24): 4385-4415. https://doi.org/10.1016/s0142-9612(03)00343-0
Ross A., Klee D., Schuermann K., Höcher H. Development of a temperature sensitive drug release system for polymeric implant devices, Biomaterials. 2003; 24(24): 4417-4423. https://doi.org/10.1016/s0142-9612(03)00342-9
Wei G., Pettway G.J., McCauley L.K., Ma P.X. The release profiles and bio-activity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres, Biomaterials. 2004; 25(2): 345-352. https://doi.org/10.1016/s0142-9612(03)00528-3
Park Y.J., Lee Y.M., Park S.N., Lee J.Y., Ku Y., Chung C.P., Lee S.J. Enhanced guided bone regeneration by controlled tetracycline release from poly(L-lactide) bar-rier membranes, J Biomed Mater Res. 2000; 51(3): 391-397. https://doi.org/10.1002/1097-4636(20000905)51:3<391::aid-jbm13>3.0.co;2-9
Lee P.I. Kinetics of drug release from hydrogel matrices, Journal of Con-trolled Release. 1985; 2: 277-288. https://doi.org/10.1016/0168-3659(85)90051-3
Zilberman M. Dexamethasone load-ed bioresorbable films used in medical support devices: Structure, degradation, crystallinity and drug release, Acta Biomaterialia. 2005; 1(6): 615-624. https://doi.org/10.1016/j.actbio.2005.06.007
Gangadharam P.R.J., Ashtekar D.R., Farhi D.C., Wise D.L. Sustained release of isoniazid in vivo from a single implant of a biodegradable polymer, Tubercle. 1991; 72(2): 115-122. https://doi.org/10.1016/0041-3879(91)90038-t
Ammoury N., Devissaguet J.-P., Du-brasquet M., Benita S. Jejunal Absorption, Pharmacological Activity, and Pharmaco-kinetic Evaluation of Indomethacin-Loaded Poly(d,l-Lactide) and Poly(Isobutyl-Cyanoacrylate) Nanocapsules in Rats, Pharmaceutical Research. 1991; 8(1): 101-105. https://doi.org/10.1023/A:1015846810474
Ichihara T., Sakamoto K., Mori K., Akagi M. Transcatheter arterial chemoembolization therapy for hepatocellular carcinoma using polylactic acid microspheres containing aclarubicin hydrochloride, Can-cer Research. 1989; 49: 4357-4362.
Ike O., Shimizu Y., Ikada Y., Watanabe S., Natsume T., Wada R., Hyon S.H., Hitomi S. Biodegradation and anti-tumour effect of adriamycin-containing poly(L-lactic acid) microspheres, Bio-materials. 1991; 12(8): 757-762. https://doi.org/10.1016/0142-9612(91)90026-7
Tarantili P.A., Koumoulos H. Sus-tained release of guaifenesin and iprifla-vone from biodegradable coatings, Euro-pean Polymer Journal. 2008; 44(2): 444-452. https://doi.org/10.1016/j.eurpolymj.2007.11.014
Ferrero C., Bravo I., Jimenez-Castѐllanos M.R. Drug release kinetics and fronts movement studies from methyl methacrylate (MMA) copolymer matrix tablets: effect of copolymer type and ma-trix porosity, Journal of Controlled Re-lease. 2003; 92(1-2): 69-82. https://doi.org/10.1016/s0168-3659(03)00301-8
Brazel C.S., Peppas N.A. Mecha-nisms of solute and drug transport in relax-ing, swellable, hydrophilic glassy poly-mers, Polymer. 1999; 40(12): 3383-3398. https://doi.org/10.1016/S0032-3861(98)00546-1
Blagoeva R., Nedev A. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms, Bioauto-mation. 2006; 4: 80-88.
Arbuzov V.N. Jekspluatacija neft-janyh i gazovyh skvazhin. Chast' 1: ucheb. Posobie. Tomsk: Izd-vo Tomskogo politehnicheskogo universiteta, 2011, 200 p. (In Russ.)
Ipatov A.I., Kremenskij M.I. Geof-izicheskij i gidrodinamicheskij kontrol' razrabotki mestorozhdenij uglevodorodov. Moscow, NIC «Reguljarnaja i haoticheska-ja dinamika»; Institut komp'juternyh issle-dovanij, 2006, 780 p. (In Russ.)
Anisimov L.A., Kilyakov V.N., Vo-rontsova I.V. The Use of Tracers for Reser-voir Characterization, Proceedings of the SPE Middle East Oil and Gas Show and Conference, March 15-18, 2009, Manama, Bahrain International Exhibition Center. p. 8. https://doi.org/10.2118/118862-ms
Khaledialidusti R., Kleppe J. A comprehensive framework for the theoreti-cal assessment of the single-well-chemical-tracer tests, Journal of Petroleum Science and Engineering. 2017; 159: 164-181. https://doi.org/10.1016/j.petrol.2017.09.027
Prud’homme A. Hydrofracking: What Everyone Needs to Know. Oxford University Press, 2013, p. 208.
Montgomery M. Fracking and con-tamination risk Available at: https://www.rcinet.ca/en/2014/12/17/fracking-and-contamination-risk/ (accessed 29 September 2024).
Mukhametshin I. R., Nukhaev M. T., Semikin D. A. Monitoring lateral wells with multi-stage fracturing using the chem-ical markers embedded in completion equipment (Russian), OIJ, 2018; 3: 46-49. https://doi.org/10.24887/0028-2448-2018-3-46-49
Li H., Liu Z., Li Y., Luo H., Cui X., Nie S., Ye K. Evaluation of the Release Mechanism of Sustained-Release Tracers and its Application in Horizontal Well In-flow Profile Monitoring, ACS Omega. 2021; 6(29): 19269-19280. https://doi.org/10.1021/acsomega.1c02748
Wang C., Li X., Cheng X., Chen Z., Wang T., Xing Z., Dong X., Yang X., Dai F., Zhang K. Oilfield sustained-release tracers based on different binding forms and their controlled-release mechanism, Geoenergy Science and Engineering. 2024; 232(A): 212440. https://doi.org/10.1016/j.geoen.2023.212440
Jing C., Wang Q., Ma R., Deng Q., Qi A., Wang J., Lin J., Xu J. Study on sustained-release kinetics of intelligent tracer for water search in horizontal wells, Ge-oenergy Science and Engineering. 2023; 227: 211861. https://doi.org/10.1016/j.geoen.2023.211861
Sackett C.K., Narasimhan B. Mathematical modeling of polymer erosion: Consequences for drug delivery, International Journal of Pharmaceutics. 2011; 418(1): 104-114. https://doi.org/10.1016/j.ijpharm.2010.11
Li S., Shen Y., Li W., Hao X. A common profile for polymer-based con-trolled releases and its logical interpretation to general release process, J Pharm Pharm Sci. 2006; 9(2): 238-244.
Platonov I.A., Marilov S.V., Nikishin I.A., Arutjunov Ju.I., Minahmetov R.A., Efimov E.G., Bryksin A.S., Labaev M.Ju. Patent RF, no. 202679, 2021. (In Russ.)
Platonov I.A., Nikishin I.A., Mi-nahmetov R.A., Chertenkov M.V. Patent RF, no. 212021, 2022. (In Russ.)
Platonov I.A., Nikishin I.A., Mi-nahmetov R.A., Chertenkov M.V. Patent RF, no. 213332, 2022. (In Russ.)