Preparation of standard gas and liquid media by chromato-desorption method

  • Igor A. Platonov Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation
  • Irina N. Kolesnichenko Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation
  • Alexander S. Bryksin Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation
  • Ekaterina A. Novikova Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation
  • Irina M. Sukhanova Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation
  • Dmitriy L. Kolesnichenko Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation
Keywords: gas chromatography, chromato-desorption systems, standard gas mixtures, standard liquid mixtures, mono-lithic chromato-desorption systems.

Abstract

The paper presents an analysis of modern techniques for producing gas and liquid media with a given concentration of analytes by the chromato-desorption method. The possibilities of dynamic and discrete static methods, approaches to miniaturization and automation of the process are shown. Using the example of fatty acids (FA), the possibilities of using monolithic chromate desorption systems (MHDS) to produce standard liquid media are presented. The paper compares the degree of LC extraction from MHDS based on various polymer materials in the static extraction mode at temperatures of 25, 50 and 80°C and a pressure of 17-18 MPa. It is shown that the extraction of LC from MHDS based on polyester resin with an error of maintaining constant concentrations not exceeding 10% is achieved with 5-6 immersion in the extraction medium. Ranges of detectable concentrations of LC in n-octane extracts obtained as a result of MHDS studies in the static extraction mode have been established: 3-17 g/m3, 6-36 g/m3, 8-66 g/m3 for tetradecanoic acid, 3-29 g/m3, 6-58 g/m3, 10-90 g/m3 for Pentadecanoic acid, 4-32 g/m3, 8-69 g/m3, 12-99 g/m3 for hexadecanoic acid, 4-42 g/m3, 10-89 g/m3, 15-143 g/m3 for octadecanoic acid. A comparison of the results of the analysis of solutions obtained as a result of MHDS studies based on various polymer materials in a static mode allows us to conclude that using MHDS based on polyester resin makes it possible to obtain highly concentrated LC solutions in nonpolar solvents. It is important to note that in order for the MHDS based on polyester resin to reach the quasi-stationary operating mode, it is necessary to spend more time compared with the samples of MHDS based on epoxy resin, where the output to the plateau of quasi-stationary concentrations was observed from 2, rather than from 5-6 immersion. For MHDS of a similar configuration, the stable operation time is noticeably reduced due to its weak resistance to nonpolar organic solvent and intensive extraction of LC.

Downloads

Download data is not yet available.

Author Biographies

Igor A. Platonov, Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation

Head of the Department of Chemistry, Professor, Doctor of Technical Sciences, Department of Chemistry, Samara National Research University, Samara, Russian Federation, e-mail: pia@ssau.ru

Irina N. Kolesnichenko, Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation

candidate of chemical sciences, associate professor, Department of Chemistry, Samara National Research University, Samara, Russian Federation, e-mail: irniks@mail.ru

Alexander S. Bryksin, Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation

the postgraduate student of the Department of Chemistry, Samara National Research University, Samara, Russian Federation, e-mail: 79376442669@yandex.ru

Ekaterina A. Novikova, Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation

candidate of chemical sciences, associate professor, Department of Chemistry, Samara National Research University, Samara, Russian Federation, e-mail: novikova.ea@ssau.ru

Irina M. Sukhanova, Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation

candidate of chemical sciences, associate professor, Department of Chemistry, Samara National Research University, Samara, Russian Federation, e-mail: mim042004@mail.ru

Dmitriy L. Kolesnichenko, Samara National Research University named after academician S.P. Korolev, Samara, Russian Federation

the postgraduate student of the Department of Chemistry, Samara National Research University, Sa-mara, Russian Federation, e-mail: irniks@mail.ru

References

Vitenberg A.G., Ioffe B.V. Gazovaja jekstrakcija v hromatograficheskom an-alize: Parofaznyj analiz i rodstvennye metody. Leningrad, Himija Publ., 1982, 280 p. (In Russ.)

Vitenberg A.G. Staticheskij parofaznyj gazohromatograficheskij analiz. Fiziko-himicheskie osnovy i oblasti prime-nenija, Russian Journal of General Chemis-try, 2003; 47(1): 7-22. (In Russ.)

Vitenberg A.G., Equilibrium model in the description of gas extraction and head-space analysis, Journal of analytical chem-istry, 2003; 58(1): 2-15. https://doi.org/10.1023/A:1021873828994.

Moskvin L.N., Nikitina T.G. Mem-brane methods of substance separation in analytical chemistry, Journal of analytical chemistry, 2004; 59(1): 2-16. https://doi.org/10.1023/B:JANC.0000011661.47796.b2

Vakh C., Pochivalov A., Andruch V., Moskvin L., Bulatov A. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction proce-dure: liquid chromatographic determina-tion of ofloxacin in human urine samples, Analytica Chimica Acta, 2016; 907: 54-59. https://doi.org/10.1016/j.aca.2015.12.004 (In Russ.)

Moskvin L.N, Rodinkov O.V. Contin-uous chromatomembrane headspace analy-sis, Journal of Chromatography A, 1996; 725(2): 351-359. https://doi.org/10.1016/0021-9673(95)00991-4

Moskvin L.N., Rodinkov O.V., Kartu-zov A.N. Hromatomembrannyj metod razdelenija veshhestv i ego analiticheskie vozmozhnosti, Journal of analytical chem-istry, 1996; 51(8): 835. (In Russ.)

Postnov V.N., Rodinkov O.V., Mos-kvin L.N., Novikov A.G., Bugaichenko A.S., Krokhina O.A. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration, Russian chemical reviews, 2016; 85(2): 115-138. https://doi.org/10.1070/RCR4551

Stoljarov B.V., Karcova L.A. Sravnitel'naja jeksperimental'naja ocenka poljarnosti i selektivnosti nepodvizhnyh faz v gazovoj hromatografii s pomoshh'ju kon-stant Rorshnajdera-Mak-Rejnol'dsa i na osnove termodinamicheskih harakteristik, Journal of analytical chemistry, 1984; 39(5): 883. (In Russ.)

Makarov E.D., Stolyarov B.V., Bychinskaya I.V., Zenkevich I.G., Berezkin V.G. New design of a sorption device for the preconcentration of organic impurities and their subsequent determination by gas chromatography, Journal of analytical chemistry, 2005; 60(1): 6-11. https://doi.org/10.1007/s10809-005-0003-3

Přikryl P., Ševčík J., Kubinec R., Jurdáková H., Ostrovský I., Soják L., Be-rezkin V. Comparison of needle concentra-tor with SPME for GC determination of benzene, toluene, ethylbenzene, and xy-lenes in aqueous samples, Chromatograph-ia, 2006; 64(1-2): 65-70. https://doi.org/10.1365/s10337-006-0800-3

Jurdáková H., Kubinec R., Jurčiši-nová M., Krkošová Z., Blaško J., Ostrovský I., Soják L., Berezkin V.G. Gas chromatog-raphy analysis of benzene, toluene, ethylbenzene and xylenes using newly de-signed needle trap device in aqueous sam-ples, Journal of Chromatography A, 2008; 1194(2): 161-164. https://doi.org/10.1016/j.chroma.2008.04.065

Platonov I.A., Kolesnichenko I.N., Rodinkov O.V., Gorbacheva A.R., Moskvin L.N. Methods and devices for the prepara-tion of standard gas mixtures, Journal of analytical chemistry, 2018; 73(2): 109-127. https://doi.org/10.1134/S1061934818020090

Platonov I.A., Kolesnichenko I.N., Novikova E.A., Mukhanova I.M. Polu-chenie gazovykh smesei izvestnogo sostava dinamicheskimi metodami, Sorbtsionnye i Khromatograficheskie Protsessy, 2017; 17(3): 378-387. https://doi.org/10.17308/sorpchrom.2017.17/391. (In Russ.)

Slominska M., Konieczka P., Na-miesnik J. New developments in prepara-tion and use of standard gas mixtures, Trends Anal. Chem., 2014; 62: 135-143. https://doi.org/10.1016/j.trac.2014.07.013

Slominska М., Konieczka P., Na-miesnik J. Standard gas mixtures – indis-pensable reference materials in the analysis of gaseous media, Trends Anal. Chem., 2010; 29(5): 419-429. https://doi.org/10.1016/j.trac.2010.02.003

Naganowska-Nowak A., Konieczka P., Przyjazny A., Namiesnik J. Develop-ment of techniques of generation of gase-ous standard mixtures, Crit. Rev. Anal. Chem., 2005; 35(1): 31-35. https://doi.org/10.1080/10408340590947916

Fijalo C., Dymerski T., Gebicki J., Namiesnik J. Devices for the Production of Reference Gas Mixtures, Crit. Rev. Anal. Chem., 2016; 46(5): 361-373. https://doi.org/10.1080/10408347.2014.953672

Berezkin V.G., Platonov I.A., Smygina I.N. Hromato-desorbcionnyj sposob poluchenija potoka gaza, soderzhashhego mikroprimesi letuchih soedinenij, Himija i himicheskaja tehnologija, 2007; 50(8): 22-24. (In Russ.)

Vitenberg A.G., Konopel'ko L.A. Gas-chromatographic headspace analysis: metrological aspects, Journal of analytical chemistry, 2011; 66(5): 438-457. https://doi.org/10.1134/S106193481103018X

Platonov I.A., Kolesnichenko I.N., Lange P.K., Hromato-desorbcionnyj sposob prigotovlenija graduirovochnyh gazovyh smesej letuchih organicheskih soedinenij, Metrologija, 2016; 4: 29-36. (In Russ.)

Berezkin V.G., Platonov I.A., Lep-skij M.V., Ismagilov D.R., Onuchak L.A. Dinamicheskij sposob poluchenija parogazovyh potokov letuchih organich-eskih soedinenij v inertnom gaze, Vestnik SamGU, 2002; S: 115-123. (In Russ.)

Berezkin V.G., Platonov I.A., Ismagilov D.R., Onuchak L.A. Dinamich-eskij sposob poluchenija parogazovyh smesej s postojannymi koncentracijami letuchih organicheskih soedinenij v uslovi-jah kontakta gazovoj fazy s regenerirue-mym potokom zhidkogo rastvora, Sorbtsionnye i khromatograficheskie protsessy, 2006; 6(4): 591-595. (In Russ.)

Berezkin V.G., Platonov I.A., Smygina I.N. Poluchenie potokov mikro-koncentracij letuchih organicheskih soedi-nenij, Jekologija i promyshlennost' Rossii, 2007; 12: 48-49. (In Russ.)

Berezkin V.G., Platonov I.A., Arut-junov Ju.I., Smygina I.N., Nikitchenko N.V. Patent RF, no. 2324173, 2008. (In Russ.)

Berezkin V.G., Platonov I.A., Arut-junov Ju.I., Smygina I.N., Nikitchenko N.V. Patent RF, no. 2324174, 2008. (In Russ.)

Berezkin V.G., Platonov I.A., Arut-junov Ju.I., Kolesnichenko I.N., Nikitchen-ko N.V. Patent RF, no. 2465584, 2012. (In Russ.)

Platonov I.A., Kolesnichenko I.N., Platonov V.I., Lobanova M.S., Miheenkova A.Je. Mikroanaliticheskie sistemy dlja opredelenija jendogennyh biomarkerov v vydyhaemom vozduhe, Sovremennaja nau-ka: aktual'nye problemy i puti ih reshenija, 2016; 1(23): 41-46. (In Russ.)

Platonov I.A., Kolesnichenko I.N., Lobanova M.S., Miheenkova A.Je. Hroma-to-desorbcionnye mikrosistemy dlja kolichestvennogo opredelenija bi-omarkerov serdechno-sosudistyh zabolevanij v vydyhaemom vozduhe, Sov-remennaja nauka: aktual'nye problemy i puti ih reshenija, 2017; 1(32): 14-16. (In Russ.)

Platonov I.A., Kolesnichenko I.N., Lobanova M.S., Miheenkova A.Je. Analit-icheskie mikrosistemy dlja koncentrirovan-ija sledovyh kolichestv veshhestv iz prob vydyhaemogo vozduha, Sovremennaja nauka: aktual'nye problemy i puti ih resh-enija, 2017; 1(32): 17-18. (In Russ.)

Kolesnichenko I.N., Anikina M.A., Platonov I.A. Optimizacija uslovij nasysh-henija i predpodgotovki hromato-desorbcionnyh mikrosistem dlja polucheni-ja gazovyh smesej acetona, Sorbtsionnye i khromatograficheskie protsessy, 2020; 20(4): 426-433. https://doi.org/10.17308/sorpchrom.2020.20/2949. (In Russ.)

Platonov I.A., Kolesnichenko I.N., Novikova E.A., Pavlova L.V., Lobanova M.S., Mikheenkova A.E. Preparation of calibration gas mixtures by the chromato-desorption method for increasing the accu-racy of quantitative determination of bio-genic pentane in expired air, Measurement techniques, 2017; 60(8): 848-852. https://doi.org/10.1007/s11018-017-1281-5

Pavlova L.V., Platonov I.A., Ni-kitchenko N.V., Kolesnichenko I.N. Prime-nenie parofaznogo analiza dlja poluchenija obshhego obraza list'ev jevkalipta pru-tovidnogo, Himija rastitel'nogo syr'ja, 2016; 3: 135-146. (In Russ.)

Pavlova L.V., Platonov I.A., Kole-snichenko I.N., Novikova E.A. Corbcionnye mikrotrubki kak obrazcy sostava letuchih organicheskih soedinenij na primere romashki aptechnoj, Sorbtsionnye i khromatograficheskie protsessy, 2018; 18(5): 736-744. https://doi.org/10.17308/sorpchrom.2018.18/600 (In Russ.)

Platonov I.A., Novikova E.A., Kole-snichenko I.N., Karsunkina A.S., Margarjan A.Je. Issledovanie sorbcionnyh processov v hromato-desorbcionnyh sistemah na osnove nanostrukturirovannogo polimernogo sorbenta Polisorb-1, Sorbtsionnye i khro-matograficheskie protsessy, 2023; 23(4): 495-503. https://doi.org/10.17308/sorpchrom.2023.23/11543. (In Russ.)

Platonov I. A., Muhanova I. M., Kolesnichenko I. N., Bryksin A. S. Izuchenie vozmozhnosti poluchenija post-ojannyh koncentracij organorastvorimyh analitov v organicheskih sredah v processe jekspluatacii monolitnyh hromato-desorbcionnyh system, Sorbtsionnye i khromatograficheskie protsessy, 2021; 23(2): 158-170. https://doi.org/10.17308/sorpchrom.2023.23/11140 (In Russ.)

Platonov I.A., Bryksin A.S., Mu-hanova I.M., Kolesnichenko I.N. Sravnitel'naja ocenka raboty monolitnyh hromato-desorbcionnyh sistem v statich-eskom i dinamicheskom rezhimah jekstrakcii, Sorbtsionnye i khromato-graficheskie protsessy. 2023; 23(4): 504-513. https://doi.org/10.17308/sorpchrom.2023.23/11544 (In Russ.)

Vitenberg A.G., Dobryakov Y.G., Gromysh E.M. Preparation of stable gas mixtures with microconcentrations of vola-tile substances in vapor-phase sources at elevated pressures, Journal of analytical chemistry, 2010; 65(12): 1284-1290. https://doi.org/10.1134/S1061934810120142 (In Russ.)

Noel R., Sanderson A. Materials for Selective Separations and Other Technolo-gies, Cellulosics, 1993; p. 24.

Svec F., Tennikova T.B., Deyl Z. Monolithic materials: preparation, proper-ties and applications. Amsterdam. Elsevier, 2003, 780 p.

Viklund C., Svec F., Fréchet J.M.J., Irgum K. Monolithic, “Molded”, Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry: Control of Porous Properties during Polymerization, Chem. Mater. 1996; 8(3): 744-750. https://doi.org/10.1021/cm950437j

Kubín M., Špaček P., Chromeček R. Gel permeation chromatography on porous poly(ethylene glycol methacrylate), Col-lection of Czechoslovak Chemical Commu-nications, 1967; 32(11): 3881-3887. https://doi.org/10.1135/cccc19673881

Végvári A., Földesi A., Hetényi C., Kocnegarova O., Schmid M.G., Kudirkaite V., Hjertén S. A new easy-to-prepare ho-mogeneous continuous electrochromato-graphic bed for enantiomer recognition, Electrophoresis, 2000; 21(15): 3116-3125. https://doi.org/10.1002/1522-2683(20000901)21:15<3116::AID-ELPS3116>3.0.CO;2-5.

Ross W.D., Jefferson R.T. In Situ–Formed Open-Pore Polyurethane as Chro-matography Supports, Journal of Chroma-tographic Science, 1970; 8(7): 386-389. https://doi.org/10.1093/chromsci/8.7.386

Schnecko H., Bieber O. Foam filled columns in gas chromatography, Chroma-tographia, 1971; 4(3): 109-112. https://doi.org/10.1007/BF02311199

Ross W.D., Hileman F.D., Sievers G.G., Hess G.G. In situ preparation and evaluation of open pore polyurethane chromatographic columns, Analytical Chemistry, 1973; 45(7): 1126-1130. https://doi.org/10.1021/ac60329a029

Lynn T.R., Rushneck D.R., Cooper A.R. High Resolution-Low Pressure Liquid Chromatography, Journal of Chromato-graphic Science, 1974; 12(2): 76-79. https://doi.org/10.1093/chromsci/12.2.76

Dandeneau R.D., Zerenner E.H. An investigation of glasses for capillary chromatography, Journal of High Resolution Chromatography, 1979; 2(6): 351-356. https://doi.org/10.1002/jhrc.1240020617

Hjertén S., Liao J.-L., Zhang R. High-performance liquid chromatography on continuous polymer beds, Journal of Chromatography A, 1989; 473: 273-275. https://doi.org/10.1016/s0021-9673(00)91309-8

Janča J., Pokorný S., Vilenchik L.Z., Belenkii, B.G. Concentration effects in gel permeation chromatography, Journal of Chromatography A, 1981; 211(1): 39-44. https://doi.org/10.1016/S0021-9673(00)81171-1

Tennikova T.B., Horák D., Švec F., Kolár J., Čoupek J., Trushin S. A., Belen-kii, B.G. Hydrolysed macroporous glycidyl methacrylate-ethylene dimethacrylate co-polymer sorbent for size-exclusion high-performance liquid chromatography of syn-thetic polymers and biopolymers, Journal of Chromatography A, 1988; 435: 357-362. https://doi.org/10.1016/s0021-9673(01)82196-8

Tennikova T.B., Horák D., Švec F., Tennikov M. B., Kever E.E., Belenkii B.G. Hydrolyzed macroporous glycidyl methac-rylate-ethylene dimethacrylate copolymer with narrow pore size distribution, Journal of Chromatography A, 1989; 475(2): 187-194. https://doi.org/10.1016/s0021-9673(01)89674-6

Mal’tsev V.G., Nasledov D.G., Trushin S.A., Tennikova T.B., Vinogrado-va L.V., Volokitina I.N., Belenkii, B.G. High-performance liquid chromatography of proteins on short capillary columns, Journal of High Resolution Chromatog-raphy, 1990; 13(3): 185-189. https://doi.org/10.1002/jhrc.1240130310

Belenkii B.G., Tennikova T.B., Svec F. High-Performance Membrane Chromatography. A Novel Method of Protein Sepa-ration, Journal of Liquid Chromatography, 1990; 13(1): 63-70. https://doi.org/10.1080/01483919008051787

Tennikova T.B., Bleha M., Švec F., Almazova T.V., Belenkii B.G. High-performance membrane chromatography of proteins, a novel method of protein separa-tion, Journal of Chromatography A, 1991; 555(1-2): 97-107. https://doi.org/10.1016/s0021-9673(01)87170-3

Svec F., Frechet J.M.J. Continuous rods of macroporous polymer as high-performance liquid chromatography sepa-ration media, Analytical Chemistry, 1992; 64(7): 820-822. https://doi.org/10.1021/ac00031a022

Viktorova E.N., Kanat'eva A.YU., Korolev A.A., Kurganov A.A. Divinylben-zene-based monolithic capillary columns in capillary liquid chromatography, Russian journal of physical chemistry A, 2007; 81(3): 428-432. https://doi.org/10.1134/S0036024407030247

Viktorova E.N., Korolev A.A., Ibra-gimov T.R., Kanat'eva A.Y., Kurganov A.A. Monolithic capillary columns based on ethylene glycol dimethacrylate for sepa-ration of polymers by molecular mass, Pol-ymer science, Series A, 2013; 55(3): 204-211. https://doi.org/10.1134/S0965545X13030085

Liang Y., Zhang L., Zhang Y. Recent advances in monolithic columns for protein and peptide separation by capillary liquid chromatography, Analytical and Bioanalyt-ical Chemistry, 2012; 405(7): 2095-2106. https://doi.org/10.1007/s00216-012-6570-x

Eeltink S., Wouters S., Dores-Sousa J.L., Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and pep-tides, Journal of Chromatography A, 2016; 1498: 8-21. https://doi.org/10.1016/j.chroma.2017.01.002

Kanatyeva A.YU., Kurganov A.A., Viktorova E.N., Korolev A.A. Monolithic stationary phases in liquid and gas chroma-tography, Russian chemical reviews, 2008; 77(4): 373-379. https://doi.org/10.1070/RC2008v077n04ABEH003754

Zolotov Yu.A. Osnovy analiticheskoi khimii. M., Vysshaya shkola Publ., 2004, pt. 1, 361 p. (In Russ.)

Adepu S., Ramakrishna S. Con-trolled Drug Delivery Systems: Current Status and Future Directions, Molecules. 2021; 26(19): 5905-5953. https://doi.org/10.3390/molecules26195905

Wang L, Liu X. Sustained Release Technology and Its Application in Environmental Remediation: A Review, Environmental Research and Public Health. 2019; 16(12): 2153-2166. https://doi.org/10.3390/ijerph16122153

Dai Y.-Q., Qin G., Geng S.-Y., Yang B., Xu Q., Wang J.-Y., Photo-responsive release of ascorbic acid and catalase in CDBA-liposome for commercial applica-tion as a sunscreen cosmetic, RSC Adv. 2012; 2(8): 3340-3346. https://doi.org/10.1039/c2ra01171a

Xue Y., Tian J., Tian W., Gong P., Dai J., Wang X., Significant fluorescence enhancement of spiropyran in colloidal dispersion and its light-induced size tuna-bility for release control, J. Phys. Chem. C. 2015; 119(35): 20762-20772. https://doi.org/10.1021/acs.jpcc.5b06905

Grigor'eva M.V. Polimernye sistemy s kontroliruemym vysvobozhdeniem bio-logicheski aktivnyh soedinenij, Biotehnologija. 2011; 4(2): 9-23.

Laaksonen T.J., Laaksonen H.M., Hirvonen J.T., Murtomäki L. Cellular au-tomata model for drug release from binary matrix and reservoir polymeric devices, Biomaterials. 2009; 30(10): 1978-1987. https://doi.org/10.1016/j.biomaterials.2008.12.028

Bajpai A.K., Shukla S.K., Bhanu S., Kankane S. Responsive polymers in con-trolled drug delivery, Progress in Polymer Science. 2008; 33(11): 1088-1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005

Grassi M., Grassi G. Mathematical Modelling and Controlled Drug Delivery: Matrix Systems, Current Drug Delivery. 2005; 2(1): 97-116. https://doi.org/10.2174/1567201052772906

Grassi M., Lapasn R., Pricl S. Modeling of drug release from a swellable ma-trix, Chemical Engineering Communica-tions. 1998; 169(1): 79-109. https://doi.org/10.1080/00986449808912722

Hersel U., Dahmen C., Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Bio-materials. 2003; 24(24): 4385-4415. https://doi.org/10.1016/s0142-9612(03)00343-0

Ross A., Klee D., Schuermann K., Höcher H. Development of a temperature sensitive drug release system for polymeric implant devices, Biomaterials. 2003; 24(24): 4417-4423. https://doi.org/10.1016/s0142-9612(03)00342-9

Wei G., Pettway G.J., McCauley L.K., Ma P.X. The release profiles and bio-activity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres, Biomaterials. 2004; 25(2): 345-352. https://doi.org/10.1016/s0142-9612(03)00528-3

Park Y.J., Lee Y.M., Park S.N., Lee J.Y., Ku Y., Chung C.P., Lee S.J. Enhanced guided bone regeneration by controlled tetracycline release from poly(L-lactide) bar-rier membranes, J Biomed Mater Res. 2000; 51(3): 391-397. https://doi.org/10.1002/1097-4636(20000905)51:3<391::aid-jbm13>3.0.co;2-9

Lee P.I. Kinetics of drug release from hydrogel matrices, Journal of Con-trolled Release. 1985; 2: 277-288. https://doi.org/10.1016/0168-3659(85)90051-3

Zilberman M. Dexamethasone load-ed bioresorbable films used in medical support devices: Structure, degradation, crystallinity and drug release, Acta Biomaterialia. 2005; 1(6): 615-624. https://doi.org/10.1016/j.actbio.2005.06.007

Gangadharam P.R.J., Ashtekar D.R., Farhi D.C., Wise D.L. Sustained release of isoniazid in vivo from a single implant of a biodegradable polymer, Tubercle. 1991; 72(2): 115-122. https://doi.org/10.1016/0041-3879(91)90038-t

Ammoury N., Devissaguet J.-P., Du-brasquet M., Benita S. Jejunal Absorption, Pharmacological Activity, and Pharmaco-kinetic Evaluation of Indomethacin-Loaded Poly(d,l-Lactide) and Poly(Isobutyl-Cyanoacrylate) Nanocapsules in Rats, Pharmaceutical Research. 1991; 8(1): 101-105. https://doi.org/10.1023/A:1015846810474

Ichihara T., Sakamoto K., Mori K., Akagi M. Transcatheter arterial chemoembolization therapy for hepatocellular carcinoma using polylactic acid microspheres containing aclarubicin hydrochloride, Can-cer Research. 1989; 49: 4357-4362.

Ike O., Shimizu Y., Ikada Y., Watanabe S., Natsume T., Wada R., Hyon S.H., Hitomi S. Biodegradation and anti-tumour effect of adriamycin-containing poly(L-lactic acid) microspheres, Bio-materials. 1991; 12(8): 757-762. https://doi.org/10.1016/0142-9612(91)90026-7

Tarantili P.A., Koumoulos H. Sus-tained release of guaifenesin and iprifla-vone from biodegradable coatings, Euro-pean Polymer Journal. 2008; 44(2): 444-452. https://doi.org/10.1016/j.eurpolymj.2007.11.014

Ferrero C., Bravo I., Jimenez-Castѐllanos M.R. Drug release kinetics and fronts movement studies from methyl methacrylate (MMA) copolymer matrix tablets: effect of copolymer type and ma-trix porosity, Journal of Controlled Re-lease. 2003; 92(1-2): 69-82. https://doi.org/10.1016/s0168-3659(03)00301-8

Brazel C.S., Peppas N.A. Mecha-nisms of solute and drug transport in relax-ing, swellable, hydrophilic glassy poly-mers, Polymer. 1999; 40(12): 3383-3398. https://doi.org/10.1016/S0032-3861(98)00546-1

Blagoeva R., Nedev A. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms, Bioauto-mation. 2006; 4: 80-88.

Arbuzov V.N. Jekspluatacija neft-janyh i gazovyh skvazhin. Chast' 1: ucheb. Posobie. Tomsk: Izd-vo Tomskogo politehnicheskogo universiteta, 2011, 200 p. (In Russ.)

Ipatov A.I., Kremenskij M.I. Geof-izicheskij i gidrodinamicheskij kontrol' razrabotki mestorozhdenij uglevodorodov. Moscow, NIC «Reguljarnaja i haoticheska-ja dinamika»; Institut komp'juternyh issle-dovanij, 2006, 780 p. (In Russ.)

Anisimov L.A., Kilyakov V.N., Vo-rontsova I.V. The Use of Tracers for Reser-voir Characterization, Proceedings of the SPE Middle East Oil and Gas Show and Conference, March 15-18, 2009, Manama, Bahrain International Exhibition Center. p. 8. https://doi.org/10.2118/118862-ms

Khaledialidusti R., Kleppe J. A comprehensive framework for the theoreti-cal assessment of the single-well-chemical-tracer tests, Journal of Petroleum Science and Engineering. 2017; 159: 164-181. https://doi.org/10.1016/j.petrol.2017.09.027

Prud’homme A. Hydrofracking: What Everyone Needs to Know. Oxford University Press, 2013, p. 208.

Montgomery M. Fracking and con-tamination risk Available at: https://www.rcinet.ca/en/2014/12/17/fracking-and-contamination-risk/ (accessed 29 September 2024).

Mukhametshin I. R., Nukhaev M. T., Semikin D. A. Monitoring lateral wells with multi-stage fracturing using the chem-ical markers embedded in completion equipment (Russian), OIJ, 2018; 3: 46-49. https://doi.org/10.24887/0028-2448-2018-3-46-49

Li H., Liu Z., Li Y., Luo H., Cui X., Nie S., Ye K. Evaluation of the Release Mechanism of Sustained-Release Tracers and its Application in Horizontal Well In-flow Profile Monitoring, ACS Omega. 2021; 6(29): 19269-19280. https://doi.org/10.1021/acsomega.1c02748

Wang C., Li X., Cheng X., Chen Z., Wang T., Xing Z., Dong X., Yang X., Dai F., Zhang K. Oilfield sustained-release tracers based on different binding forms and their controlled-release mechanism, Geoenergy Science and Engineering. 2024; 232(A): 212440. https://doi.org/10.1016/j.geoen.2023.212440

Jing C., Wang Q., Ma R., Deng Q., Qi A., Wang J., Lin J., Xu J. Study on sustained-release kinetics of intelligent tracer for water search in horizontal wells, Ge-oenergy Science and Engineering. 2023; 227: 211861. https://doi.org/10.1016/j.geoen.2023.211861

Sackett C.K., Narasimhan B. Mathematical modeling of polymer erosion: Consequences for drug delivery, International Journal of Pharmaceutics. 2011; 418(1): 104-114. https://doi.org/10.1016/j.ijpharm.2010.11

Li S., Shen Y., Li W., Hao X. A common profile for polymer-based con-trolled releases and its logical interpretation to general release process, J Pharm Pharm Sci. 2006; 9(2): 238-244.

Platonov I.A., Marilov S.V., Nikishin I.A., Arutjunov Ju.I., Minahmetov R.A., Efimov E.G., Bryksin A.S., Labaev M.Ju. Patent RF, no. 202679, 2021. (In Russ.)

Platonov I.A., Nikishin I.A., Mi-nahmetov R.A., Chertenkov M.V. Patent RF, no. 212021, 2022. (In Russ.)

Platonov I.A., Nikishin I.A., Mi-nahmetov R.A., Chertenkov M.V. Patent RF, no. 213332, 2022. (In Russ.)

Published
2025-01-03
How to Cite
Platonov, I. A., Kolesnichenko, I. N., Bryksin, A. S., Novikova, E. A., Sukhanova, I. M., & Kolesnichenko, D. L. (2025). Preparation of standard gas and liquid media by chromato-desorption method. Sorbtsionnye I Khromatograficheskie Protsessy, 24(6), 858-884. https://doi.org/10.17308/sorpchrom.2024.24/12565