Adsorption immobilization of inulinase from Aspergillus ficuum and Kluyveromyces marxianus: a comparative aspect
Abstract
Virtual screening of ligands for the immobilization of fungal inulinase from Aspergillus ficuum and yeast inulinase from Kluyveromyces marxianus was performed using computer simulation methods. An algorithm has been developed to reveal the molecular mechanism of adsorption immobilization of inulinases using sequential (cascade) docking methods. The probable binding sites of polymeric matrices with enzyme molecules from various producers were visualized during adsorption immobilization. It has been established that the complexation of inulinase with charged carrier matrices occurs mainly due to hydrogen bonds and van der Waals interactions. It has been shown that during the sorption of inulinases from Aspergillus ficuum and Kluyveromyces marxianus on the matrices KU-2, AV-17-2P, VION KN-1, VION AN-1, KOPAN-90 and chitosan, the following similarities are revealed: 1) when both types of inulinases interact with the KU-2 matrix, hydrogen bonds are formed only between the carrier sulfo groups and the protein molecule; 2) only van der Waals interactions and the absence of hydrogen bonds are revealed between the matrix of the anion exchange resin AV-17-2P and enzymes; 3) chitosan forms the largest number of hydrogen bonds with both inulinases among the carriers studied by us.
Distinctive features of inulinases from Aspergillus ficuum and Kluyveromyces marxianus during sorption on KU-2, AV-17-2P, VION KN-1, VION AN-1, and KOPAN-90 matrices were revealed: 1) binding affinity of yeast inulinase to the surface of KU-2 resin generally higher, and the number of hydrogen bonds and the number of amino acid residues that form van der Waals interactions, is greater than that of the fungal enzyme; 2) the binding affinities and the number of amino acids involved in van der Waals interactions for inulinase from Kluyveromyces marxianus during sorption on the anion exchange resin AV-17-2P also exceed their values for the enzyme from Aspergillus ficuum; 3) in contrast to fungal inulinase, in which 21 amino acid residues are part of the binding sites with all the carriers we studied, the yeast enzyme has only one such residue.
Downloads
References
Jafarizadeh-Malmiri H., Ghaz-Jahanian M.A., Berenjian A., Potential applications of chitosan nanoparticles as novel supports in en-zyme immobilization, Am. J. Biochem. Bio-technol., 2012; 8: 203-219. https://doi.org/10.3844/ajbbsp.2012.203.219
Ansari S.A., Husain Q., Potential appli-cations of enzymes immobilized on/in nano materials: a review, Biotechnol. Adv., 2012; 30; 512-523. https://doi.org/10.1016/j.biotechadv.2011.09.005
Vaghari H., Jafarizadeh-Malmiri H., Mohammadlou M., Berenjian A., Anarjan N., Jafari N., Nasiri S., Application of magnetic nanoparticles in smart enzyme immobilization, Biotechnology Letters, 2016; 38: 223-233. https://doi.org/10.1007/s10529-015-1977-z
Cipolatti E.P., Valério A., Henriques R.O., Moritz D.E., Ninow J.L., Freire D.M.G., Manoel E.A., Fernandez-Lafuente R., de Oliveira D., Nanomaterials for biocatalyst im-mobilization-state of the art and future trends, RSC Advances, 2016; 6: 104675-104692. https://doi.org/10.1039/C6RA22047A
Janecek S., Strategies for obtaining stable enzymes, Process Biochem., 1993; 28: 435-445.
Guzik U., Hupert-Kocurek K., Wojcieszynska D., Immobilization as a strate-gy for improving enzyme properties – Applica-tion to oxidoreductases, Molecules, 2014; 19: 8995-9018. https://doi.org/10.3390/molecules19078995
Lei Z., Bi S., Yang H., Chitosan-tethered the silica particle from a layer-by-layer approach for pectinase immobilization, Food Chem., 2007; 104: 577-584. https://doi.org/10.1016/j.foodchem.2006.12.008
Efremenko E.N., Tatarinova N.Yu., The effect of long-term preservation of bacterial cells immobilized in poly(vinyl alcohol) cryo-gel on their viability and biosynthesis of target metabolites, Microbiology, 2007; 76(3): 336-341. https://doi.org/10.1134/S0026261707030113
Liese A., Hilterhaus L., Evaluation of immobilized enzymes for industrial applica-tions, Chemical Society Reviews, 2013; 42: 6236-6249. doi: 10.1039/c3cs35511j
Efremenko E.N., Stepanov N.A., Ni-kolskaya A.B., Senko O.V., Spiricheva O.V., Varfolomeev S.D., Biocatalysts based on im-mobilized cells of microorganisms in the pro-duction of bioethanol and biobutanol, Catalysis in Industry, 2011; 3(1): 41-46. https://doi.org/10.1134/S207005041101003X
Efremenko E.N., Stepanov N.A., Gudkov D.A., Sen'ko O.V., Lozinskij V.I., Varfolomeev S.D., Immobilizovannye gribnye biokatalizatory dlya polucheniya kompleksa cellyulaz, gidrolizuyushchego vozobnovlyae-moe rastitel'noe syr'e, Kataliz v promyshlen-nosti, 2013; 1: 68-77.
Barbosa O., Ortiz C., Berenguer-Murcia Á., Torres R., Rodrigues R.C, Fernandez-Lafuente R., Strategies for the one-step immo-bilization-purification of enzymes as industrial biocatalysts, Biotechnol. Adv., 2015; 33: 435-456. https://doi.org/10.1016/j.biotechadv.2015.03.006
Garcia-Galan C., Berenguer-Murcia Á., Fernandez-Lafuente R., Rodrigues R.C., Poten-tial of different enzyme immobilization strate-gies to improve enzyme performance, Adv. Synth.Catal., 2011; 353: 2885-2904. https://doi.org/10.1002/adsc.201100534
Mateo C., Palomo J.M., Fernandez-Lorente G., Guisan J.M., Fernandez-Lafuente R., Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol., 2007; 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
Fernandez-Lafuente R., Stabilization of multimeric enzymes: strategies to prevent sub-unit dissociation, Enzyme Microb. Technol., 2009; 45: 405-418. https://doi.org/10.1016/j.enzmictec.2009.08.009
Balcao V.M., Vila M.M., Structural and functional stabilization of protein entities: State-of-the-art, Advanced Drug Delivery Re-views, 2015; 93: 25-41. https://doi.org/10.1016/j.addr.2014.10.005
Bolivar J.M., Mateo C., Rocha-Martin J., Cava F., Berenguer J., Fernandez-Lafuente R., Guisan J.M., The adsorption of multimeric enzymes on very lowly activated supports in-volves more enzyme subunits: stabilization of a glutamate dehydrogenase from Thermus ther-mophilus by immobilization on heterofunction-al supports, Enzyme Microb. Technol., 2009; 44: 139-144. https://doi.org/10.1016/j.enzmictec.2008.10.004
Min K., Yoo Y.J., Recent progress in nanobiocatalysis for enzyme immobilization and its application, Biotechnology and Biopro-cess Engineering, 2014; 19: 553-567. https://doi.org/10.1007/s12257-014-0173-7
Efremenko E.N., Lozinsky V.I., Ser-geeva V.S., Plieva F.M., Makhlis T.A., Kazankov G.M., Gladilin A.K., Varfolomeyev S.D., Addition of polybrene improves stability of organophosphate hydrolase immobilized in poly(vinyl alcohol) cryogel carrier, Journal of Biochemical and Biophysical Methods, 2002; 51(2): 195-201. https://doi.org/10.1016/s0165-022x(01)00135-x
Rodrigues R.C., Ortiz C., Berenguer-Murcia Á., Torres R., Fernández-Lafuente R., Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev., 2013; 45: 6290-6307. https://doi.org/10.1039/c2cs35231a
Karpov S.I., Matveeva M.V., Selemenev V.F., Kinetics of the sorption of amino acids by KU-2-8 gel cationite, Russian Journal of Physical Chemistry A, 2001; 75(2): 266-271.
Shkutina I.V., Stoyanova O.F., Selemenev V.F., Grigor'eva G.A., Adsorption im-mobilization of glucoamylase on amphoteric polyelectrolytes, Russian Journal of Physical Chemistry A, 2001; 75(11); 1843-1845.
Krisilova E.V., Eliseeva T.V., Sele-menev V.F., Krisilov A.V., Oros G.Y., The influence of side substituents in α-amino acids on their sorption by a cation-exchange mem-brane, Russian Journal of Physical Chemistry A, 2009; 83(10): 1763-1767. https://doi.org/10.1134/S0036024409100240
Ohta K., Akimoto H., Matsuda S., To-shimitsu D., Nakamura T., Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger, Biosci. Biotech-nol. Biochem., 1998; 62(9): 1731-1738. https://doi.org/10.1271/bbb.62.1731
Basso A., Spizzo P., Ferrario V., Knapic L., Savko N., Braiuca P., Ebert C., Ricca E., Calabrò V., Gardossi L., Endo- and exo-inulinases: enzyme-substrate interaction and rational immobilization, Biotechnol. Prog., 2010; 26(2); 397-405. https://doi.org/10.1002/btpr.334
Artyukhov V.G., Kovaleva T.A., Khol-yavka M.G., Bityutskaya L.A., Grechkina M.V., Obraztsova T.B. Study of the oligomeric structure and some physicochemical properties of inulinase from Kluyveromyces marxianus Y-303, Biophysics, 2009; 54(6): 675-680. https://doi.org/10.1134/S0006350909060025
Artyukhov V.G., Holyavka M.G., Ko-valeva T.A., Structural and functional proper-ties of inulinases. Ways to regulate their activi-ty, Biophysics, 2013; 58(4): 493-501. https://doi.org/10.1134/S0006350913040039
Uhm T.B., Chung M.S., Lee S.H., Gour-ronc F., Housen I., Kim J.H., Van Beeumen J., Haye B., Vandenhaute J. Purification and char-acterization of Aspergillus ficuum en-doinulinase, Biosci Biotechnol Biochem., 1999; 63(1): 146-151. https://doi.org/10.1271/bbb.63.146
Ettalibi M., Baratti J.C. Purification, properties and comparison of invertase, exoin-ulinases and endoinulinases of Aspergillus ficuum, Appl Microbiol Biotechnol., 1987; 26: 13-20. https://doi.org/10.1007/BF00282143
Artyuhov V.G., Holyavka M.G., Ko-valeva T.A. Fiziko-himicheskie i kineticheskie svojstva inulinaz, Vestnik biotekhnologii i fizi-ko-himicheskoj biologii im. Yu.A. Ovchinnikova, 2013; 2: 67-77.
Holyavka M.G., Artyukhov V.G., Kon-dratyev M.S., Samchenko A.A., Kabanov A.V., Komarov V.M., In silico design of high-affinity ligands for the immobilization of in-ulinase, Computers in Biology and Medicine, 2016; 71: 198-204. https://doi.org/10.1016/j.compbiomed.2016.02.015
Holyavka M.G., Kovaleva T.A., Grech-kina M.V., Ostankova I.V., Artyukhov V.G., Inulinases from various producers: the features of their permolecular organization, Applied Bi-ochemistry and Microbiology, 2014; 50(1): 10-16. https://doi.org/10.1134/S0003683814010050
Holyavka M., Artyukhov V., Kovaleva T., Structural and functional properties of in-ulinases: A review, Biocatalysis and Biotrans-formation, 2016; 34(1): 1-17. https://doi.org/10.1080/10242422.2016.1196486
Holyavka, M.G., Evstigneev, M.P., Artyukhov, V.G., Savin, V.V., Development of heterogeneous preparation with inulinase for-tubular reactor systems, Journal of Molecular Catalysis B: Enzymatic, 2016; 129: 1-5. https://doi.org/10.1016/j.molcatb.2016.03.006
Holyavka M.G., Kondratyev M.S., Terentyev V.V., Samchenko A.A., Kabanov A.V., Komarov V.M., Artyukhov V.G., The Molecu-lar Mechanism of Adsorption Immobilization of Inulinase on Polymer Matrices, Biophysics, 2017; 62 (1): 5-11. https://doi.org/10.1134/S0006350917010109
Abdullatypov A.V., Kondratyev M.S., Kholyavka M.G., Artyukhov V.G., Recon-struction of the spatial structure of inulinase from Kluyveromyces marxianus to find regula-tory pathways of its catalytic activity, Biophys-ics, 2016; 61(4): 565-571. https://doi.org/10.1134/S0006350916040023
Artyukhov V.G., Kovaleva T.A., Khol-yavka M.G., Bityutskaya L.A., Grechkina M.V., Thermal inactivation of free and immo-bilized inulinase, Applied biochemistry and microbiology, 2010; 46(4): 385-389. https://doi.org/10.1134/S0003683810040034
Holyavka M.G., Kayumov A.R., Baydamshina D.R., Koroleva V.A., Trizna E.Yu., Trushin M.V., Artyukhov V.G., Effcient fructose production from plant extracts by im-mobilized inulinases from Kluyveromyces marxianus and Helianthus tuberosus, Interna-tional Journal of Biological Macromolecules, 2018; 115: 829-834. https://doi.org/10.1016/j.ijbiomac.2018.04.107
Holyavka M.G., Kondratyev M.S., Lukin A.N., Agapov B.L., Artyukhov V.G., Immobilization of inulinase on KU-2 ion-exchange resin matrix, International Journal of Biological Macromolecules, 2019; 138: 681-692. https://doi.org/10.1016/j.ijbiomac.2019.07.132
Koroleva V.A., Sakibaev F.A., Shelo-menceva T.N., Holyavka M.G., Artyuhov V.G. Izuchenie zakonomernostej termicheskoj inaktivacii svobodnogo i immobilizovannogo na matrice hitozana tripsina, Vestnik VGU. Seriya «Himiya. Biologiya. Farmaciya», 2018; 3: 58-63.
Sakibaev F.A., Holyavka M.G., Makin S.M., Artyuhov V.G. An in silico search for the sites of potential binding with charged and hydrophobic carriers in the molecules of en-doinulinase from Aspergillus ficuum and ex-oinulinase from Aspergillus awamori, Biophys-ics, 2019; 64(3): 323-330. https://doi.org/10.1134/S0006350919030199
Sakibaev F.A., Makin S.M., Holyavka M.G., Artyuhov V.G. Zakonomernosti formi-rovaniya dimernyh kompleksov molekulami ekzo- i endoinulinaz. Izmenenie sostava poten-cial'nyh sajtov svyazyvaniya s zaryazhennymi i gidrofobnymi nositelyami dlya ih immobi-lizacii, Sorbtsionnye i khromatograficheskie protsessy, 2021; 21 (6): 905-927.