Thin layer chromatography of methylated derivatives of sodium alkylbenzenesulfonates in water analysis by GC-MS
Abstract
Sodium alkylbenzene sulfonates or linear alkyl benzene sulfonates (LAS) are the most common synthetic anionic surfactants and water pollutants. They can cause both acute and chronic toxic effects on water organisms. Selective determination of sodium alkylbenzene sulfonates as a separate class of anionic surfactants is possible using gas chromatography coupled with mass spectrometry (GC-MS) in the form of linear alkylbenzenesulfonic acid methyl esters (LABSA ME). In order to purify the extracts and concentrate the analytes, we studied the behaviour of these compounds by ascending high-performance thin-layer chromatography using Kieselgel 60 F254 and Sorbfil plates. A mixture of n-hexane and methanol solvents in a ratio of 23:1 (by volume) was used as the mobile phase. Under these conditions, sodium alkylbenzenesulphonates remain on the start line, while their derivatives (ME ABSC), obtained by methylation with trimethyl orthoformate in the presence of trifluoroacetic acid (with a yield of η=98%), form zones characterised by retention coefficient values of Rf = 0.62 and Rf = 0.71 on Kieselgel 60 F254 and Sorbfil plates, respectively. The repeatability of the Rf values was characterised by a standard deviation of 6.1 and 5.9 %, respectively (n=16). The completeness of extraction (95.0–100.0 %) of analytes from the plates by descending TLC with acetonitrile was noted. The applicability of the TLC method for the concentration of analytes and pretreatment of extracts on the example of real water samples was shown. Using GC-MS with electron impact ionisation, we determined the concentrations of sodium alkylbenzenesulphonates in water sampled in the southern basin of Lake Baikal from a depth of 400 m (0.24±0.02 µg/dm3) and in snowmelt water from the ice of the Krestovka River where it flows into Lake Baikal near the village of Listvyanka (31.1 ± 1.0 µg/dm3).
Downloads
References
Britton L.N. Surfactants and the en-vironment. J. of Surfactants and Deter-gents, 1998; 1(1): 109-117. https://doi.org/
1007/s11743-998-0014-6.
Moldovan Z., Avram V., Marincas O., Petrov P., Ternes T. The determination of the linear alkylbenzene sulfonate iso-mers in water samples by gas-chromatography/mass spectrometry. J. of Chromatography A, 2011; 1218(2): 343-349. https://doi.org/10.1016/j.chroma.2010.11.043
LAS. Linear Alkylbenzene Sulpho-nate (CAS No. 68411-30-3). Revised Envi-ronmental Aspect of the HERA Report, February 2013. P. 1-55.
Linear alkylbenzene sulfonates. SIDS Initial Assessment Report for 20th SIAM. UNEP Publications, Paris, France, 19-21 April, 2005. P. 1-357.
Prikaz № 83 ot 21.02.2020 “Ob ut-verzhdenii normativov predelno dopustimykh vozdeistvii na unikalnuyu ekologicheskuyu sistemu ozera Baikal i perechnya vrednykh veshchestv, v tom chisle veshchestv, otnosyashchikhsya k kategoriyam osobo opasnykh, vysokoo-pasnykh, opasnykh i umerenno-opasnykh, dlya unikalnoi ekologicheskoi systemy ozera Baikal” [The Order No. 83 from 21.02.2020 “On the statement of the stand-ards of maximum permissible effects on Lake Baikal unique ecological system and the list of hazardous substances including extremely-hazardous, high-hazardous, haz-ardous, and moderate-hazardous substances for Lake Baikal unique ecological system]. The Ministry of Natural Resources and Ecology of Russian Federation. (In Russ.)
Prikaz № 552 ot 13.12.2016 “Ob utverzhdenii normativov kachestva vody vodnyh objektov rybohozyaistvennogo znacheniya, v tom chisle normativov pre-delno dopustimyh koncentracii vrednyh veschestv v vodah vodnyh objektov ry-bohozyaistvennogo znacheniya” s iz-meneniyami ot 10.03.2020 [The Order No. 552 from 13.12.2016 “On the statement of the standards of water quality of fisheries water bodies including maximum permis-sible concentration of toxic substances in fisheries water bodies” including correc-tions from 10.03.2020]. The Ministry of Agriculture of Russian Federation. Зареги-стрировано в МинЮст РФ 13.01.2017 г., рег. № 45203. (In Russ.)
Nikonova A.A., Mizandrontsev I.B., Bazhenov B.N. et al., Khanaev I.V., Sha-balina O.V., Afanasyeva A.A., Avezova T.N., Chindyavskaya A.N., Bityutsky A.N., Kan A.Y., Karikh L.G., Dubrova K.S., Vo-robyeva S.S., Glyzina O.Y. Toxic effect of anionic surfactants on freshwater sponge Lubomirskia baikalensis and its endosym-biotic microalgae Chlorella sp. Diversity, 2023; 15: 77. https://doi.org/10.3390/
d15010077.
Belanger S.E., Bowling J.W., Lee D.M., Le Blank E.M., Kerr K.M., McAvoy D.C., Christman S.C., Davidson D.H. Inte-gration of aquatic fate and ecological re-sponses to linear alkyl benzene sulfonate (LAS) in model stream ecosystems. Ecotoxicology and Environmental Safety, 2002; 52: 150-171. https://doi.org/10.1006/eesa.2002.2179.
Lewis A.M. Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Wat. Res., 1991; 25(1): 101-113. https://doi.org/10.1016/0043-1354(91)90105-Y.
Gouda A.M.R., Hagras A.E., Okbah M.A., El-Gammal M.I. Influence of the linear alkylbenzene sulfonate (LAS) on hematological and biochemical parameters of Nile tilapia, Oreochromis niloticus. Sau-di Journal of Biological Sciences, 2022; 29: 1006-1013. https://doi.org/10.1016/j.sjbs.2021.09.074
Jorgensen E., Christoffersen K. Short-term effects of linear alkylbenzene sulfonate on freshwater plankton studied under field conditions. Environ. Toxicol. Chem., 2000; 19(4): 904-911. https://doi.org/10.1002/etc.5620190417
Nikonova A.A., Vorobyeva S.S. Nonspecif ic response of Lake Baikal phy-toplankton to anthropogenic impact. Vavi-lov Journal of Genetics and Breeding, 2022, 26: 467-476. https://doi.org/10.18699/VJGB-22-57
Zhou J., Wu Z., Yu D., Pang Y., Cai H., Liu Y. Toxicity of linear alkylbenzene sulfonate to aquatic plant Potamogeton perfoliatus L. Environ. Sci. Pollut. Res. Int., 2018; 25(32): 32303-32311. https://doi.org/10.1007/s11356-018-3204-7
Preethi P.S., Hariharan N.M., Vick-ram S., Rameshpathy M., Manikandan S., Subbaiya R., Karmegam N., Yadav V., Ravindran B., Chang S.W., Awasthi M.K. Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. Bioresource Technology, 2022; 359: 127444. https://doi.org/10.1016/j.biortech.2022.127444
Bradai M., Han J., El Omri A., Fu-namizu N., Sayadi S., Isoda H. Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cyto-toxic concentrations. Cytotechnology, 2016; 68(4): 1267-1275. https://doi.org/10.1007/s10616-015-9887-4
Nikonova A.A., Proidakov A.G., Rokhin A.V., Chindyavskaya A.N., Dyl-gerova S.D., Rokhina E.F., Khanaev I.V. Efficient and green esterification approach for determining of sodium alkylbenzene sulfonates in dry extracts. Talanta Open, 2023; 8: 100238. https://doi.org/10.1016/j.talo.2023.100238
DIONEX. Application Note 219. Determination of linear alkylbenzene sul-phonate in treatment plant wastewater streams using on-line solid-phase extrac-tion followed by HPLC with fluorescence detection. Available at: http://www.cromlab.es/Articulos/Columnas/HPLC/Thermo/Acclaim/SURF/81963-AN219-LC-LAS-Surfactant-05Oct2009-LPN2152.pdf по состоянию на 18.08.2023 (accessed 25.08.2023). (In Russ.)
Ding W.H., Chen C.T. Analysis of linear alkylbenzene sulfonates in water samples by large-volume injection-port derivatization and gas chromatography-mass spectrometry. J. Chromatogr. A, 1999; 857: 359-364. https://doi.org/10.1016/s0021-9673(99)00722-0
Ding W.H., Lo J.-H., Tzing S.-H. Determination of linear alkylbenzene sul-fonates and their degradation products in water samples by gas chromatography with ion- trap mass spectrometry. J. Chroma-togr. A, 1998; 818: 270-279. https://doi.org/10.1016/S0021-9673(98)00550-0
Waters J., Garrigan J.T. An im-proved microdesulphonation/gas liquid chromatography procedure for the determi-nation of linear alkylbenzene sulphonates in U.K. rivers. Water Res., 1983; 17: 1549-1562. https://doi.org/10.1016/0043-1354(83)90011-8
Reemtsma T. Methods of analysis of polar aromatic sulfonates from aquatic environments. Journal of Chromatography A, 1996; 733: 473-489. https://doi.org/10.1016/0021-9673(95)00738-5
Guo P., Guan Z., Wang W., Chen B., Huang Yu. Determination of linear al-kylbenzene sulfonates by ion-pair solid-phase extraction and high-performance liq-uid chromatography. Talanta, 2011; 84(2): 587-92. https://doi.org/10.1016/j.talanta.2011.01.014
Kirchner J.G. Thin layer chroma-tography. New York – Chichester – Bris-bane – Toronto, John Wiley & Sons, Inc., 1978, 788 p.
Bhawani S.A., Sulaiman O., Hashim R., Mohamad Ibrahim M.N. Analysis of surfactants by thin-layer chromatography: A Review. Tenside Surf. Det., 2011; 47(2): 73-80. https://doi.org/10.3139/113.110054
Voogt P., Knepper T.P. Quantifica-tion and quality assurance in surfactant analysis. Chapter 4. In: Comprehensive Analytical Chemistry XL. Eds by Knepper T.P., Barcelo D., and Voogt P. Elsevier Science B.V. 2003. P. 443-523. https://doi.org/10.1016/S0166-526X(03)40007-X
Dyer S.D., Bernhard M.J., Cowan-Ellsberry C., Perdu-Durand E., Demmerle S., Cravedi J.-P. In vitro biotransformation of surfactants in fish. Part I: Linear al-kylbenzene sulfonate (C12-LAS) and alco-hol ethoxylate (C13EO8). Chemosphere. 2008; 72: 850-862. https://doi.org/10.1016/j.chemosphere.2008.02.019
Claben D., Ackermann J., Schaeffer A. Fate and behavior of 14C-labelled ionic compounds in a soil simulation test. Sci-ence of the Total Environment. 2021; 768: 144970. https://doi.org/10.1016/j.scitotenv.2021.144970
Lawrence J.G. Chapter III. Surfac-tants. Chromatography. In: Encyclopedia of separation science. Ed. by Wilson I.D. Academic Press, 2000: 4310-4327.
Stauffer E., Dolan J.A., Newman R. Gas Chromatography and Gas Chromatog-raphy-Mass Spectrometry. Fire Debris Analysis, 2008: 235-293. https://doi.org/10.1016/B978-012663971-1.50012-9