Comparative assessment of methods for determining CO2 emissions from soil

Keywords: greenhouse gases, CO2 emissions, carbon, chamber, gas chromatography, infrared gas analyzer, portable gas chromatograph.

Abstract

Soil is a vital component of the carbon cycle, and even small changes in its carbon stocks, driven by factors such as land-use changes or global warming, can significantly affect atmospheric CO2 concentration and the overall balance of greenhouse gases.

The aim of this study is to compare three methods for assessing CO2 emissions from soil: the closed-chamber method using an infrared (IR) analyzer, a portable gas chromatograph, and a method involving soil sample collection and incubation under laboratory conditions, allowing for the assessment of net emissions in various ecosystems. The study analyzes the accuracy and reproducibility of measurement results, as well as the practical application features of the devices. The comparison of methods was carried out under greenhouse conditions with controlled climate factors (temperature, soil moisture, lighting) on chernozem soil. The preparation processes for the analysis, the measurement duration, required additional equipment, and statistical indicators such as variance (σ2), standard deviation (σ), and the coefficient of variation (CV) were identified.

Based on the obtained data, the highest average soil respiration activity (0.1653 g C/m2·h) was recorded for the laboratory gas chromatograph (GC), which may be due to additional aeration and disturbance of soil structure during sample collection. In the case of the portable GC, the average values were the lowest (0.0077 g C/m2·h), with higher precision but lower reproducibility in some measurement points. The IR analyzer showed average values comparable to the laboratory GC (0.0224 g C/m2·h) but had lower precision and higher CV values, indicating less consistent results. The most statistically significant differences were found between the laboratory and portable GCs, while differences between the portable GC and the IR analyzer were insignificant (p>0.05). This finding confirms that methods using closed chambers yield comparable results and allow for more detailed factual information.

Downloads

Author Biographies

Alina R. Kamalova, Kazan (Volga Region) Federal University, Kazan, Russian Federation

researcher at the educational and scientific laboratory of the Center for Agricultural and Ecobiotechnologies of the Institute of Ecology, biotechnology and Environmental Management KFU, Kazan, Russian Federation, e-mail: akhtjamovaalina07@gmail.com

Polina A. Kuryntseva, Kazan (Volga Region) Federal University, Kazan, Russian Federation

PhD in biology, associate prof., senior researcher at the research laboratory "GreenAgro" of the Institute of Ecology, biotechnology and Environmental Management KFU, Kazan, Russian Federation, e-mail: polinazwerewa@yandex.ru

Alexandr S. Gordeev, Kazan (Volga Region) Federal University, Kazan, Russian Federation

researcher at the educational and scientific laboratory of the Center for Agricultural and Ecobiotechnologies of the Institute of Ecology, biotechnology and Environmental Management KFU, Kazan, Russian Federation, e-mail: drgor@mail.ru

Natalya V. Danilova, Kazan (Volga Region) Federal University, Kazan, Russian Federation

PhD in biology, senior researcher at the educational and scientific laboratory of the Center for Agricultural and Ecobiotechnologies of the Institute of Ecology, biotechnology and Environmental Management KFU, Kazan, Russian Federation, e-mail: natasha-danilova91@mail.ru

Vladimir I. Platonov, Samara National Research University named after Academician S.P. Korolev, Samara, Russian Federation

Ph.D. (chemistry), associate prof., department of Chemistry, Samara National Research University, Samara, Russian Federation, e-mail: rovvv@yandex.ru

Svetlana Yu. Selivanovskaya, Kazan (Volga Region) Federal University, Kazan, Russian Federation

doctor of biological sciences, professor, leading researcher of the educational and scientific laboratory of the Center for Agricultural and Ecobiotechnologies of the Institute of Ecology, biotechnology and Environmental Management KFU, Kazan, Russian Federation, e-mail: svetlana.selivanovskaya@kpfu.ru

References

Bhavna J., Arideep M., Bhanu P., Madhoolika A. Emission of greenhouse gases from soil: an assessment of agricultural management practices. Plant Resp. to Soil Pollut., 2020; 221-248. https://doi.org/10.1007/978-981-15-4964-9_14

Camarda M., De Gregorio S., Capasso G., Di Martino R.M.R., Gurrieri S., Prano V. The monitoring of natural soil CO2 emissions: Issues and perspectives. Earth-Science Rev., 2019; 198: 102928. https://doi.org/10.1016/j.earscirev.2019.102928

Yoshida H., ten Hoeve M., Christensen T.H., Bruun S., Jensen L.S., Scheutz C. Life cycle assessment of sewage sludge management options including long-term impacts after land application // J. Clean. Prod., 2018; 174: 538-547. https://doi.org/10.1016/j.jclepro.2017.10.175

Friedlingstein P., Jones Matthew W., O’Sullivan M., Andrew R.M., Hauck J., Peters G.P., Peters W., Pongratz J., Sitch S., Le Quéré C., Bakker, Dorothee C.E., Canadell J.G., Ciais P., Jackson R.S. Research collection: Global carbon budget 2019. Optim. Param. Tuning Feed. Control. with Appl. to Biomol. Antithetic Integr. Control., 2019; 10(3): 12-19. https://doi.org/10.5194/essd-11-1783-2019

MacAgga R., Asante M., Sossa G., Antonijević D., Dubbert M., Hoffmann M. Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes. Atmos. Meas. Tech., 2024; 17(4): 1317-1332. https://doi.org/10.5194/amt-17-1317-2024

Trumbore S.E. Potential responses of soil organic carbon to global environmental change. Proc. Natl. Acad. Sci.U.S.A., 1997; 94(16): 8284-8291. https://doi.org/10.1073/pnas.94.16.8284

Merl T., Hu Y., Pedersen J., Zieger S.E., Bornø M.L., Tariq A., Sommer S.G., Koren K. Optical chemical sensors for soil analysis: possibilities and challenges of visualising NH3 concentrations as well as pH and O2 microscale heterogeneity. Environ. Sci. Adv., 2023; 2(9): 1210-1219. https://doi.org/10.1039/d3va00127j

Zaman M., Kleineidam K., Bakken L., Berendt J., Bracken C., Butterbach-Bahl K., Cai Z., Chang S.X., Clough T., Dawar K., Ding W.X., Dörsch P., dos Reis Martins M., Eckhardt C., Fiedler S., Frosch T., Goopy J., Görres C.M., Gupta A., Henjes S., Hofmann M.E.G., Horn M.A., Jahangir M.M.R., Jansen-Willems A., Lenhart K., Heng L., Lewicka-Szczebak D., Lucic G., Merbold L., Mohn J., Molstad L., Moser G., Murphy P., Sanz-Cobena A., Šimek M., Urquiaga S., Well R., Wrage-Mönnig N., Zaman S., Zhang J., Müller C. Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques. Applications of Nuclear Techniques for GHGs, 2021. 375 р. https://doi.org/10.1007/978-3-030-55396-8_1

Bhowmik A., Fortuna A.M., Cihacek L.J., Rahman S., Borhan M.S., Carr P.M. Use of laboratory incubation techniques to estimate greenhouse gas footprints from conventional and no-tillage organic agroecosystems. Soil Biol. Biochem., 2017; 112: 204-215. https://doi.org/10.1016/j.soilbio.2017.04.015

Kulikova M.A., Soromotin A.V. Otsenka potokov uglekislogo gaza postpi-rogennykh geosistem na severe Zapadnoi Sibi-ri. «Arktika: sovremennye podkhody k pro-izvod¬stvennoi i ekologicheskoi bezopasnosti v neftegazovom sektore», Materialy Mezhdu-narodnoi nauchno-prakticheskoi konferentsii, 28 Noyabrya 2022 g. Tyumen', 2022: 86-89. (In Russ.)

Wang L., Cheng Y., Naidu R., Chadalavada S., Bekele D., Gell P., Donaghey M., Bowman M. Application of portable gas chromatography–mass spectrometer for rapid field based determination of TCE in soil vapour and groundwater. Environ. Technol. Innov., 2021; 21: 101274. https://doi.org/10.1016/j.eti.2020.101274

McGowen E.B., Sharma S., Deng S., Zhang H., Warren J.G. An Automated Laboratory Method for Measuring CO2 Emissions from Soils. Agric. Environ. Lett., 2018; 3(1): 1-5. https://doi.org/10.2134/ael2018.02.0008

Dulov L.E., Udal'tsov S.N., Stepanov A.L. Potoki dioksida ugleroda , metana i zakisi azota v pochvakh kateny pravoberezh'ya r. Oka (Moskovskaya Oblast'). Pochvovedenie, 2010; 5: 582-590. (In Russ.)

Maiwald M., Sowoidnich K., Sumpf B. Portable shifted excitation Raman difference spectroscopy for on-site soil analysis. J. Raman Spectrosc., 2022; 53: 1560-1570. https://doi.org/10.1002/jrs.6400

Materazzi S., Gentili A., Curini R. Applications of evolved gas analysis: Part 1: EGA by infrared spectroscopy. Talanta, 2006; 68(3): 489-496. https://doi.org/10.1016/j.talanta.2005.04.055

Duff D., Lennard C., Li Y., Doyle C., Edge K.J., Holland I., Lothridge K., Johnstone P., Beylerian P., Spikmans V. Portable gas chromatography–mass spectrometry method for the in-field screening of organic pollutants in soil and water at pollution incidents. Environ. Sci. Pollut. Res., 2023; 30(40): 93088-93102. https://doi.org/10.1007/s11356-023-28648-w

Zgonnik V., Beaumont V., Deville E., Larin N., Pillot D., Farrell K.M. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA).Prog. Earth Planet. Sci., 2015; 2: 31. https://doi.org/10.1186/s40645-015-0062-5

Zainitdinova L. Vliyanie izmenenii okru-zhayushchei sredy na mikrobnoe raznoobra¬zie. Universum khimiya i biologiya, 2023; 7(109): 18-22. (In Russ.)

Leshkenov A.M. Agroecological efficiency of soil bioactivation in the mineral nutrition system of winter wheat against the background of green manure aftereffect. News Kabard. Sci. Cent. RAS., 2023; 2(112): 39-49. https://doi.org/10.35330/1991-6639-2023-2-112-39-49

O’Riordan R., Davies J., Stevens C., Quinton J.N., Boyko C. The ecosystem services of urban soils: A review. Geoderma, 2021; 395: 115076. https://doi.org/10.1016/j.geoderma.2021.115076

Pavelka M., Acosta M., Kiese R., Alti-mir N., Brümmer C., Crill P., Darenova E., Fuß R., Gielen B., Graf A., Klemedtsson L., Lohila A., Longdoz B., Lindroth A., Nilsson M., Jiménez S.M., Merbold L., Montagnani L., Peichl M., Pihlatie M., Pumpanen J., Ortiz P.S., Silvennoinen H., Skiba U., Vestin P., Weslien P., Janous D., Kutsch W. Standardisa-tion of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial eco-systems. Int. Agrophysics, 2018; 32(4): 569-587. https://doi.org/10.1515/intag-2017-0045

Kochiieru M., Feiza V., Feizienė D., Volungevičius J., Deveikytė I., Seibutis V., Pranaitienė S. The effect of environmental factors and root system on СО2 efflux in different types of soil and land uses. Zemdirbyste, 2021; 108(10): 3-10. https://doi.org/10.13080/z-a.2021.108.001

Goncharova O.Yu., Matyshak G.V., Bo-brik A.A., Timofeeva M.V., Sefilyan A.R. Otsenka vklada kornevogo i mikrobnogo dykhaniya v obshchii potok so 2 iz torfyanykh pochv i podzolov severa Zapadnoi Sibiri metodom integratsii komponentov. Pochvovedenie, 2019; 2: 234-245. https://doi.org/10.1134/s0032180x19020059 (In Russ.)

Karelin D. V., Lyuri D.I., Goryachkin S. V., Lunin V.N., Kudikov A. V. Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the Chernozems forest-steppe. Eurasian Soil Sci., 2015; 48(11): 1229-1241. https://doi.org/10.1134/S1064229315110095

Karelin D.V., Lyuri D.I., Goryachkin S.V., Lunin V.N., Kudikov A.V. Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the Chernozems forest-steppe. Eurasian Soil Sci., 2015; 48(11): 1229-1241. https://doi.org/10.1134/S1064229315110095

Görres C.M., Kammann C., Ceulemans R. Automation of soil flux chamber measurements: Potentials and pitfall. Biogeosciences, 2016; 13(6): 1949-1966. https://doi.org/10.5194/bg-13-1949-2016

Bekin N., Agam N. Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils. Biogeosciences, 2023; 20(18): 3791-3802. https://doi.org/10.5194/bg-20-3791-2023

Sharma M., Kaushal R., Kaushik P., Ramakrishna S. Carbon farming: Prospects and challenges. Sustain., 2021; 13(19): 1-15. https://doi.org/10.3390/su131911122

Gross C.D., Harrison R.B. The case for digging deeper: Soil organic carbon storage, dynamics, and controls in our changing world. Soil Syst., 2019; 3(2): 1-24. https://doi.org/10.3390/soilsystems3020028

ISO 16072:2002 Soil quality — Laboratory methods for determination of microbial soil respiration. USA, American National Standards Institute (ANSI), 2002, 26 p.

Mayer A., Hausfather Z., Jones A.D., Silver W.L. The potential of agricultural land management to contribute to lower global surface temperatures. Sci. Adv., 2018; 4(8). https://www.science.org/doi/pdf/10.1126/sciadv.aaq0932

Berger B.W., Davis K.J., Yi C., Bakwin P.S., Zhao C.L. Long-term carbon dioxide fluxes from a very tall tower in a northern forest: Flux measurement methodology. J. Atmos. Ocean. Technol., 2001; 18(4): 529-542. https://doi.org/10.1175/1520-0426(2001)018<0529:LTCDFF>2.0.CO;2

GOST R 58595-2019. Pochvy. Otbor prob. M., Standartinform, 2019, 9 p. (In Russ.)

Karelin D.V., Zamolodchikov D.G., Kraev G.N. Metodicheskoe rukovodstvo po analizu emissii ugleroda iz pochv poselenii v tundra. Moskva: TsEPL RAN, 2015. 64 p. (In Russ.)

Bure V.M. Metodologiya statisticheskogo analiza opytnykh dannykh, 2007. 138 p. (In Russ.)

Bure V.M., Parilina E.M. Teoriya veroyatnostei i matematicheskaya statistika, 2022. 416 p. (In Russ.)

Zadorozhnyi S.S. Statisticheskaya obra-botka dannykh na yazyke R, 2023. 104 p. (In Russ.)

Wielopolski L., Hendrey G., Johnsen K.H., Mitra S., Prior S.A., Rogers H.H., Torbert H.A. Nondestructive System for Analyzing Carbon in the Soil. Soil Sci. Soc. Am. J., 2008; 72(5): 1269-1277. https://doi.org/10.2136/sssaj2007.0177

Mondini C., Sinicco T., Cayuela M.L., Sanchez-Monedero M.A. A simple automated system for measuring soil respiration by gas chromatography. Talanta, 2010; 81(3): 849-855. https://doi.org/10.1016/j.talanta.2010.01.026

Gar'kusha D.N., Fedorov Yu.A. Tambieva N.S., Emissiya metana iz pochv Rostovskoi oblasti. Arid ecosystems, 2011; 17.4(49): 44–52. (In Russ.)

Zamolodchikov D. G., Grabovskii V. I., Kraev G.N. Dinamika byudzheta ugleroda lesov rossii za dva poslednikh desyatiletiya. Lesovedenie, 2011; 6: 16-28 (In Russ.)

Karelin D. V., Zolotukhin A. N., Ryzhkov O. V., Lunin V. N. Use of long-term soil respiration measurements for calculating the net carbon balance in ecosystems of the central chernozemic region. Soil Biol., 2024, 57(10): 1638-1649. https://doi.org/10.1134/S1064229324601318

Sarzhanov D.A., Vasenev V.I., Sotniko-va Yu.L., Tembo A., Vasenev I.I., Valentini R. Kratkosrochnaya dinamika i prostranstvennaya neodnorodnost' emisii CO2 pochvami estestvennykh i gorodskikh ekosistem tsen-tral'no-chernozemnogo regiona. Soil Science, 22015; 4: 469-478. https://doi.org/ 10.7868/S0032180X15040097 (In Russ.)

Burba G. Eddy covariance method-for scientific, industrial, agricultural, and regula-tory applications. Lincoln, Nebraska, LI-COR. Biosciences, 2013, 345 p. https://doi.org/10.13140/RG.2.1.4247.8561

Fedorov Yu.A., Sukhorukov V.V., Trubnik R.G. Analiticheskii obzor: emissiya i pogloshchenie parnikovykh gazov pochvami. Ekologicheskie problemy. Anthropog. Transform. Of Nat., 2021; 7(1): 6-34. https://doi.org/10.17072/2410-8553-2021-1-6-34

Mühlbachová G., Růžek P., Kusá H., Vavera R. CO2 emissions from soils under different tillage practices and weather conditions. Agronomy, 2023; 13(12):1-18. https://doi.org/10.3390/agronomy13123084

Matei S., Matei G. M., Dumitru S., Mocanu V. Soil respiration as microbial response to the endogen input of bio-synthesized organic matter and its implication in carbon sequestration. Carpathian J. Earth Environ. Sci., 2023; 18(1): 51-64. https://doi.org/10.26471/cjees/2023/018/240

Naumov A.V. Dykhanie i evapotran-spiratsiya ekosistem stepnoi kateny (Zapadnaya Sibir'). Zhivye i biokosnye sistemy, 2014; 7. https://doi.org/10.18522/2308-9709-2014-7-1 (In Russ.)

Kon'kova V.M., Burlo A.V. Narkevich I.P. Emissiya parnikovykh gazov s torfyanykh pochv v usloviyakh brestskoi i minskoi ob-lastei. Ekologicheskii vestnik, 2016; 4(38): 33-42. (In Russ.)

Published
2025-01-04
How to Cite
Kamalova, A. R., Kuryntseva, P. A., Gordeev, A. S., Danilova, N. V., Platonov, V. I., & Selivanovskaya, S. Y. (2025). Comparative assessment of methods for determining CO2 emissions from soil. Sorbtsionnye I Khromatograficheskie Protsessy, 24(6), 911-923. https://doi.org/10.17308/sorpchrom.2024.24/12568