Search for the proteins bound to the non-coding RNAs synthesized from the uxuR gene in Escherichia coli K-12
Abstract
When studying bacterial genomes and transcriptomes, several hundred small non-coding RNAs and thousands of intragenic transcripts were found, including antisense ones. In Escherichia coli their ratio to the total number of annotated genes can reach 25%, but the functional value was established for less than two dozen small RNAs. Recently, it has also been discovered that bacteria are able to secrete RNA into the external environment, and such RNAs were called exoRNAs. The vast majority of E. coli exoRNAs were synthesised from the coding regions of metabolic regulator genes. Thus, at least three regulatory RNAs of three types:– intracellular antisense, antisense exoRNA, and co-directional RNA UxuT, were encoded at the end of the gene of the transcription factor UxuR, which controls the metabolism of hexuronates. In this work, we identified the partner proteins of these RNAs using liquid chromatography-mass spectrometry (LC/MS). Chemically synthesised RNA analogues were conjugated with biotin and immobilised onto streptavidin-coated magnetic particles. Lysate proteins of E. coli cells grown to the exponential phase in the presence of D-glucose or D-galacturonate were specifically sorbed on them. Using LC/MS spectrometry, we revealed the dependence of the spectrum of sorbed proteins on the carbon source, while hexuronate metabolism proteins and SecB chaperone were found in complexes with all small RNAs. This may indicate the participation of non-coding RNAs of the uxuR gene in the regulation of carbohydrate metabolism and a certain role of SecB in their transport.
Downloads
References
Georg J., Hess W.R., cis-antisense RNA, another level of gene regulation in bacteria, Microbiol. Mol. Biol. Rev., 2011; 75(2): 286-300. https://doi.org/10.1128/MMBR.00032-10
Shavkunov K.S., Masulis I.S., Tutukina M.N., Deev A.A., Ozoline O.N., Gains and unexpected lessons from genome-scale promoter mapping, Nucleic Acids Res., 2009; 37(15): 4919-4931. https://doi.org/10.1093/nar/gkp490
Sesto N., Wurtzel O., Archambaud C., Sorek R., Cossart, P., The excludon: a new concept in bacterial antisense RNA-mediated gene regulation, Nat. Rev. Microbiol., 2013; 11:75-82. https://doi.org/10.1038/nrmicro2934
Huttenhofer A., Vogel J., Experimental approaches to identify non-coding RNAs, Nucleic Acids Res., 2006; 34(2): 635-646. https://doi.org/10.1093/nar/gkj469
Lloréns-Rico V., Cano J., Kamminga T., Gil R., Latorre A., Chen W.H., Bork P., Glass J.I., Serrano L., Lluch-Senar M., Bacterial antisense RNAs are mainly the product of transcriptional noise. Sci. Adv., 2016; 2(3):e1501363. https://doi.org/10.1126/sciadv.1501363
Huber F., Bunina D., Gupta I., Khmelinskii A., Meurer M., Theer P., Steinmetz L.M., Knop. M., Protein Abundance Control by Non-coding Antisense Transcription. Cell Rep., 2016; 15(12): 2625-2636. https://doi.org/10.1016/j.celrep.2016.05.043
Chao Y., Vogel J., A 3' UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response. Mol. Cell. 2016; 61(3): 352-363. https://doi.org/10.1016/j.molcel.2015.12.023
Dauros-Singorenko P., Blenkiron C., Phillips A., Swift S., The functional RNA cargo of bacterial membrane vesicles, FEMS Microbiol. Lett., 2018; 365(5): fny023. https://doi.org/10.1093/femsle/fny023
Plaza J.J.G., Small RNAs in cell-to-cell communications during bacterial infection, FEMS Microbiol. Lett., 2018; 365(7): fny024. https://doi.org/10.1093/femsle/fny024
Markelova N., Glazunova O., Alikina O., Panyukov V., Shavkunov K., Ozoline O., Suppression of Escherichia coli Growth Dynamics via RNAs Secreted by Competing Bacteria, Front. Mol. Biosci., 2021; 8: 609979. https://doi.org/10.3389/fmolb.2021.609979
Shavkunov K.S., Markelova N.Y., Glazunova O.A., Kolzhetsov N.P., Panyukov V.V., Ozoline O.N., The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia coli, Int. J. Mol. Sci., 2023; 24(16): 12960. https://doi.org/10.3390/ijms241612960
Lalaouna D., Carrier M.C., Semsey S., Brouard J.S., Wang J., Wade J.T., Massé E., A 3' external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol. Cell., 2015; 58(3): 393-405. https://doi.org/10.1016/j.molcel.2015.03.013
Shepherd J., Ibba M., Bacterial transfer RNAs. FEMS Microbiol. Rev., 2015; 39(3): 280-300. https://doi.org/10.1093/femsre/fuv004
Alikina O.V., Glazunova O.A., Bykov A.A., Kiselev S.S., Tutukina M.N., Shavkunov K.S., Ozoline O.N., A cohabiting bacterium alters the spectrum of short RNAs secreted by Escherichia coli, FEMS Microbiol. Lett., 2018; 365(24). https://doi.org/10.1093/femsle/fny262
Tutukina M.N., Dakhnovets A.I., Kaznadzey A.D., Gelfand M.S., Ozoline O.N., Sense and antisense RNA products of the uxuR gene can affect motility and chemotaxis acting independent of the UxuR protein, Front. Mol. Biosci., 2023; 10:1121376. https://doi.org/10.3389/fmolb.2023.1121376
Shvyreva U.S., Tutukina M.N., Ozoline O.N., «Promoter islands» of the E. coli genome as targets for sorption of the RNA processing enzymes, Sorbtsionnye i Khromatographicheskie protsessy, 2015; 15(4): 586-594. https://doi.org/10.17308/sorpchrom.2015.15/310
Ullers R.S., Luirink J., Harms N., Schwager F., Georgopoulos C., Genevaux P., SecB is a bona fide generalized chaperone in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 2004; 101(20): 7583-7588. https://doi.org/10.1073/pnas.0402398101
Seoh H.K., Tai P.C., Carbon source-dependent synthesis of SecB, a cytosolic chaperone involved in protein translocation across Escherichia coli membrane, J. Bacteriol. 1997; 179(4): 1077-1081. https://doi.org/10.1128/jb.179.4.1077-1081.1997