Search for the proteins bound to the non-coding RNAs synthesized from the uxuR gene in Escherichia coli K-12

  • Artemiy I. Dakhnovets Skolkovo Institute of Science and Technology, Moscow, Russian Federation
  • Tatiana A. Bessonova Institute of Cell Biophysics RAS, Pushchino, A.A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russian Federation
  • Olga N. Ozoline Institute of Cell Biophysics RAS, Pushchino, Russian Federation
  • Maria N. Tutukina Skolkovo Institute of Science and Technology, Moscow, Institute of Cell Biophysics RAS, Pushchino, A.A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russian Federation
Keywords: Escherichia coli, non-coding RNAs, exoRNAs, sorption on magnetic beads, LC/MS spectrometry

Abstract

When studying bacterial genomes and transcriptomes, several hundred small non-coding RNAs and thousands of intragenic transcripts were found, including antisense ones. In Escherichia coli their ratio to the total number of annotated genes can reach 25%, but the functional value was established for less than two dozen small RNAs. Recently, it has also been discovered that bacteria are able to secrete RNA into the external environment, and such RNAs were called exoRNAs. The vast majority of E. coli exoRNAs were synthesised from the coding regions of metabolic regulator genes. Thus, at least three regulatory RNAs of three types:– intracellular antisense, antisense exoRNA, and co-directional RNA UxuT, were encoded at the end of the gene of the transcription factor UxuR, which controls the metabolism of hexuronates. In this work, we identified the partner proteins of these RNAs using liquid chromatography-mass spectrometry (LC/MS). Chemically synthesised RNA analogues were conjugated with biotin and immobilised onto streptavidin-coated magnetic particles. Lysate proteins of E. coli cells grown to the exponential phase in the presence of D-glucose or D-galacturonate were specifically sorbed on them. Using LC/MS spectrometry, we revealed the dependence of the spectrum of sorbed proteins on the carbon source, while hexuronate metabolism proteins and SecB chaperone were found in complexes with all small RNAs. This may indicate the participation of non-coding RNAs of the uxuR gene in the regulation of carbohydrate metabolism and a certain role of SecB in their transport.

Downloads

Author Biographies

Artemiy I. Dakhnovets, Skolkovo Institute of Science and Technology, Moscow, Russian Federation

PhD student of Centre of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russian Federation, e-mail: artemii.dahnovec@mail.ru

Tatiana A. Bessonova, Institute of Cell Biophysics RAS, Pushchino, A.A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russian Federation

PhD, junior research scientist, Institute of Cell Biophysiocs RAS, Pushchino, Russian Federation; junior research scientist, Institute for Information Transmission Problems RAS, Moscow, Russian Federation, e-mail: tatianabessonova66@gmail.com

Olga N. Ozoline, Institute of Cell Biophysics RAS, Pushchino, Russian Federation

Dr. Sci., professor, head of the laboratory of functional genomics of prokaryotes, Institute of Cell Biophysiocs RAS, Pushchino, Russian Federation, e-mail: ozoline@rambler.ru

Maria N. Tutukina, Skolkovo Institute of Science and Technology, Moscow, Institute of Cell Biophysics RAS, Pushchino, A.A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russian Federation

PhD, senior research scientist of Centre of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russian Federation; leading research scientist, Institute for Information Transmission Problems RAS, Moscow, Russian Federation, e-mail: tutukina@iitp.ru

References

Georg J., Hess W.R., cis-antisense RNA, another level of gene regulation in bacteria, Microbiol. Mol. Biol. Rev., 2011; 75(2): 286-300. https://doi.org/10.1128/MMBR.00032-10

Shavkunov K.S., Masulis I.S., Tutukina M.N., Deev A.A., Ozoline O.N., Gains and unexpected lessons from genome-scale promoter mapping, Nucleic Acids Res., 2009; 37(15): 4919-4931. https://doi.org/10.1093/nar/gkp490

Sesto N., Wurtzel O., Archambaud C., Sorek R., Cossart, P., The excludon: a new concept in bacterial antisense RNA-mediated gene regulation, Nat. Rev. Microbiol., 2013; 11:75-82. https://doi.org/10.1038/nrmicro2934

Huttenhofer A., Vogel J., Experimental approaches to identify non-coding RNAs, Nucleic Acids Res., 2006; 34(2): 635-646. https://doi.org/10.1093/nar/gkj469

Lloréns-Rico V., Cano J., Kamminga T., Gil R., Latorre A., Chen W.H., Bork P., Glass J.I., Serrano L., Lluch-Senar M., Bacterial antisense RNAs are mainly the product of transcriptional noise. Sci. Adv., 2016; 2(3):e1501363. https://doi.org/10.1126/sciadv.1501363

Huber F., Bunina D., Gupta I., Khmelinskii A., Meurer M., Theer P., Steinmetz L.M., Knop. M., Protein Abundance Control by Non-coding Antisense Transcription. Cell Rep., 2016; 15(12): 2625-2636. https://doi.org/10.1016/j.celrep.2016.05.043

Chao Y., Vogel J., A 3' UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response. Mol. Cell. 2016; 61(3): 352-363. https://doi.org/10.1016/j.molcel.2015.12.023

Dauros-Singorenko P., Blenkiron C., Phillips A., Swift S., The functional RNA cargo of bacterial membrane vesicles, FEMS Microbiol. Lett., 2018; 365(5): fny023. https://doi.org/10.1093/femsle/fny023

Plaza J.J.G., Small RNAs in cell-to-cell communications during bacterial infection, FEMS Microbiol. Lett., 2018; 365(7): fny024. https://doi.org/10.1093/femsle/fny024

Markelova N., Glazunova O., Alikina O., Panyukov V., Shavkunov K., Ozoline O., Suppression of Escherichia coli Growth Dynamics via RNAs Secreted by Competing Bacteria, Front. Mol. Biosci., 2021; 8: 609979. https://doi.org/10.3389/fmolb.2021.609979

Shavkunov K.S., Markelova N.Y., Glazunova O.A., Kolzhetsov N.P., Panyukov V.V., Ozoline O.N., The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia coli, Int. J. Mol. Sci., 2023; 24(16): 12960. https://doi.org/10.3390/ijms241612960

Lalaouna D., Carrier M.C., Semsey S., Brouard J.S., Wang J., Wade J.T., Massé E., A 3' external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol. Cell., 2015; 58(3): 393-405. https://doi.org/10.1016/j.molcel.2015.03.013

Shepherd J., Ibba M., Bacterial transfer RNAs. FEMS Microbiol. Rev., 2015; 39(3): 280-300. https://doi.org/10.1093/femsre/fuv004

Alikina O.V., Glazunova O.A., Bykov A.A., Kiselev S.S., Tutukina M.N., Shavkunov K.S., Ozoline O.N., A cohabiting bacterium alters the spectrum of short RNAs secreted by Escherichia coli, FEMS Microbiol. Lett., 2018; 365(24). https://doi.org/10.1093/femsle/fny262

Tutukina M.N., Dakhnovets A.I., Kaznadzey A.D., Gelfand M.S., Ozoline O.N., Sense and antisense RNA products of the uxuR gene can affect motility and chemotaxis acting independent of the UxuR protein, Front. Mol. Biosci., 2023; 10:1121376. https://doi.org/10.3389/fmolb.2023.1121376

Shvyreva U.S., Tutukina M.N., Ozoline O.N., «Promoter islands» of the E. coli genome as targets for sorption of the RNA processing enzymes, Sorbtsionnye i Khromatographicheskie protsessy, 2015; 15(4): 586-594. https://doi.org/10.17308/sorpchrom.2015.15/310

Ullers R.S., Luirink J., Harms N., Schwager F., Georgopoulos C., Genevaux P., SecB is a bona fide generalized chaperone in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 2004; 101(20): 7583-7588. https://doi.org/10.1073/pnas.0402398101

Seoh H.K., Tai P.C., Carbon source-dependent synthesis of SecB, a cytosolic chaperone involved in protein translocation across Escherichia coli membrane, J. Bacteriol. 1997; 179(4): 1077-1081. https://doi.org/10.1128/jb.179.4.1077-1081.1997

Published
2025-01-08
How to Cite
Dakhnovets, A. I., Bessonova, T. A., Ozoline, O. N., & Tutukina, M. N. (2025). Search for the proteins bound to the non-coding RNAs synthesized from the uxuR gene in Escherichia coli K-12. Sorbtsionnye I Khromatograficheskie Protsessy, 24(6), 1015-1022. https://doi.org/10.17308/sorpchrom.2024.24/12588