A study of histidine sorption by sulfoethylated aminopolymers with subsequent determination by ligand exchange capillary electrophoresis method

  • Vladislav A. Ilin Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Anastasia A. Golota Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Julia S. Petrova 1Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Elena L. Lebedeva 1Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Alexander V. Pestov Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, I.Ya. Postovsky Insititute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences (IOS UB RAS), Ekaterinburg
  • Ludmila K. Neudachina Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
Keywords: sorption, amino acids, histidine, aminopolymers, capillary electrophoresis

Abstract

The work is devoted to the development of a technique for the electrophoretic determination of amino acids and the study of the sorption of histidine by materials based on chitosan with a degree of 0.5 sulfoethylation (SEC 0.5), polyethylenimine with a degree of 0.34 sulfoethylation (SEPEI 0.34) and polyamine with degrees of 0.5 sulfoethylation (SEPAS 0.5) and 1.5 (SEPAS 1.5). The development of a technique for the electrophoretic separation and determination of amino acids (alanine, γ-aminobutyric acid, arginine, asparagine, aspartic acid, valine, glycine, histidine, glutamic acid, serine, methionine, lysine, leucine, isoleucine, ornithine, oxyproline, threonine, tyrosine, tryptophan, phenylalanine) was carried out using a capillary monitoring system. electrophoresis "Kapel-105M". As a result of the conducted research, the following conditions for the separation of amino acids were optimized: detection wavelength, temperature, time and method of sample injection, pH and nature of the background electrolyte, concentration of β-cyclodextrin. The developed technique allows for the separation and determination of 12 amino acids when they are present together in solution and the determination of all 20 amino acids under study when they are individually present in solution. The values of the limits of determination and limits of detection of the studied amino acids by ligand exchange capillary electrophoresis under optimized conditions are calculated; concentration ranges of linearity of calibration dependences are determined.

The effect of the pH of an ammonia-acetate buffer solution in the range from 4.0 to 10.0 on the sorption of histidine by sulfoethylated aminopolymers was studied by the limited volume method at an initial amino acid concentration of 1·10-4 mol/dm3 (sorbent weight 0.02 g, solution volume 10.0 cm3). It was found that no quantitative extraction was observed during the sorption of histidine SEC 0.5 and SEPEI 0.34. Extraction of the amino acid SEPAS 1.5 in the sodium form is maximal at pH 4.0 and amounts to 21%. The degree of extraction of the amino acid SEPAS 1.5 in copper form increases with increasing pH and reaches a maximum value of 93% at pH 9.0-10.0. The equilibrium of histidine sorption of SEPAS 0.5 in copper form and SEPAS 1.5 in copper form at pH 9.0 is established within 30 minutes of phase contact.

Downloads

Download data is not yet available.

Author Biographies

Vladislav A. Ilin, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

Postgraduate Student, Engineer, Department of Analytical Chemistry and Environmental Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia

Anastasia A. Golota, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

a student at the Department of Analytical Chemistry and Environmental Chemistry of the Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia

Julia S. Petrova, 1Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

Head of the Department of Analytical Chemistry and Environmental Chemistry at the Institute of Natural Sciences and Mathematics, PhD, Associate Professor, Ural Federal University, Yekaterinburg, Russia

Elena L. Lebedeva, 1Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

Associate Professor of the Department of Analytical Chemistry and Environmental Chemistry at the Institute of Natural Sciences and Mathematics, Candidate of Chemical Sciences, Ural Federal University, Yekaterinburg, Russia

Alexander V. Pestov, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, I.Ya. Postovsky Insititute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences (IOS UB RAS), Ekaterinburg

Associate Professor of the Department of Organic Chemistry and High-Molecular Compounds of the Institute of Natural Sciences and Mathematics, PhD, Associate Professor, Ural Federal University, Yekaterinburg, Russia; Acting Head of the Laboratory of Organic Materials at the I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Ludmila K. Neudachina, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

Associate Professor, Department of Analytical Chemistry and Environmental Chemistry, Institute of Natural Sciences and Mathematics, PhD, Associate Professor, Ural Federal University, Yekaterinburg, Russia

References

Ezerskaya A.A., Pivovar M.L. Kapil-lyarnyi elektroforez: osnovnye printsipy, primenenie v farmatsevticheskom analize. Vestnik farmatsii. 2019; 83: 35-44.

Yakuba Yu.F. Sistemnyi podkhod k opredeleniyu osnovnykh aminokislot v produktakh pererabotki plodov i vinograda. Plodovodstvo i vinogradarstvo Yuga Rossii. 2015; 32: 168-180.

Zipaev D.V., Tulina A.A., Kozhukhov A.N. Ispol'zovanie metoda kapillyarnogo elektroforeza v otsenke pishchevykh produktov i napitkov. Vestnik Voronezh-skogo gosudarstvennogo universiteta in-zhenernykh tekhnologii. 2020; 82(1): 82-87. https://doi.org/10.20914/2310-1202-2020-1-82-87

Omar M.M.A., Elbashir A.A., Schmitz O.J. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food. Food Chemistry. 2017; 214: 300-307. https://doi.org/10.1016/j.foodchem.2016.07.060

Lorenzo M.P., Navarrete A., Balderas C., Garcia A. Optimization and validation of a CE-LIF method for amino acid deter-mination in biological samples. Journal of Pharmaceutical and Biomedical Analysis. 2013; 73: 116-124. https://doi.org/10.1016/j.jpba.2012.03.017

Cui Y., Jiang Z., Sun J., Yu J., Li M., Li M., Liu M., Guo X. Enantiomeric purity determination of (L)-amino acids with pre-column derivatization and chiral stationary phase: Development and validation of the method. Food Chemistry. 2014; 158: 401-407. https://doi.org/10.1016/j.foodchem.2014.02.133

Mustafa A., Åman P., Andersson R., Kamal-Eldin A. Analysis of free amino ac-ids in cereal products. Food Chemistry. 2007; 105(1): 317-324. https://doi.org/10.1016/j.foodchem.2006.11.044

Poinsot V., Bayle C., Couderc F. Re-cent advances in amino acid analysis by capillary electrophoresis. Electrophoresis. 2003; 24(22-23): 4047-4062. https://doi.org/10.1002/elps.200305692

Holeček M., Histidine in Health and Disease: Metabolism, Physiological Im-portance, and Use as a Supplement. Nutri-ents. 2020; 12(3): 848. https://doi.org/10.3390/nu12030848

Hirayama A., Igarashi K., Tomita M., Soga T. Development of quantitative method for determination of γ-glutamyl peptides by capillary electrophoresis tan-dem mass spectrometry: An efficient ap-proach avoiding matrix effect. Journal of Chromatography A. 2014; 1369: 161-169. https://doi.org/10.1016/j.chroma.2014.10.007

Nurmukhametova K.R., Lebedeva E.L., Petrova Yu.S., Neudachina L.K. Is-sledovanie sorbtsii arginina sul'foetiliro-vannym khitozanom s posleduyushchim opredeleniem metodom kapillyarnogo el-ektroforeza. Sorbtsionnye i khromato-graficheskie protsessy. 2022; 22(6): 856-868. https://doi.org/10.17308/sorpchrom.2022.22/10892

Kartsova L. A. Problemy analitich-eskoi khimii. T. 18. Kapillyarnyi elektro-forez. M., Nauka, 2014. 444 p.

Kartsova L. A., Alekseeva A. V. Ligandoobmennyi kapillyarnyi elektro-forez. Zhurnal analiticheskoi khimii. 2011; 66(7):.677-685.

Alifkhanova L.M.k., Pestov A.V., Mekhaev A.V., Marchuk A.A. Bosenko S.N., Petrova Yu.S., Neudachina L.K. Sul-foethylated polyaminostyrene – polymer ligand with high selective interaction with silver ions in multicomponent solutions. Journal of Environmental Chemical Engi-neering. 2019; 7(1): 102846. https://doi.org/10.1016/j.jece.2018.102846

Pestov A.V., Petrova Yu.S., Bukha-rova A.V., Neudachina L.K., Koryakova O.V., Matochkina E.G., Kodess M.I., Yatluk Yu.G. Synthesis in a Gel and Sorp-tion Properties of N-2-Sulfoethyl Chitosan. Journal of Applied Chemistry. 2013; 86(2): 290-293. https://doi.org/10.1134/S1070427213020225

Kapitanova E.I., Zemlyakova E.O., Pestov A.V., Sinelshchikova A.R. Petrova Yu.S., Neudachina L.K. Sulfoethylated polyethylenimine: synthesis in gel and sorption properties. Russian Chemical Bul-letin. 2019; 68(6): 1252-1256. https://link.springer.com/article/10.1007/s11172-019-2549-5

Alekseeva A.V., Kartsova L.A. Vozmozhnosti ligandoobmennogo kapilly-arnogo elektroforeza pri opredelenii bio-logicheski aktivnykh veshchestv. Zhurnal analiticheskoi khimii. 2011; 66(7): 764-772.

Karbaum A., Jira T. Chiral separa-tion of unmodified amino acids with non-aqueous capillary electrophoresis based on the ligand-exchange principle. Journal of Chromatography A. 2000; 874(2):.285-292.

Kahle C., Holzgrabe U. Determina-tion of Binding Constants of Cyclodextrin Inclusion Complexes With Amino Acids and Dipeptides by Potentiometric Titration. Chirality. 2004; 16(8); 509-515.

Lyashenko D.Yu. Issledovanie vzaimodeistviya α- i β-tsiklodekstrina s yadrom aromaticheskikh aminokislot v vodnykh rastvorakh metodom UF-spektroskopii. Poverkhnost'. 2018; 10(25): 154-170.

Xu Z., Guan J., Fan S. Combined Use of Cu(II)-L-Histidin Complexand β-Cyclodextrin for the Enantioseparation of Three Amino Acids by CE and a Study of the Synergistic Effect. Journal of Chroma-tographic Science. 2020; 10(1): 969–975.

Chernova R.K., Varygina O. V., Be-rezkina N.S. Izbiratel'noe opredelenie gis-tidina v smeshannykh rastvorakh α-aminokislot Izvestiya Saratovskogo univer-siteta. Novaya seriya. Seriya: Khimiya. Bi-ologiya. Ekologiya. 2015; 15(4): 15-21. https://doi.org/10.18500/1816-9775-2015-15-4-15-21

Panyushkin V.T., Shcherbakov I.N., Volynkin V.A., Bolotin S.N., Bukov N.N., Shvydko T.V., Dzhabrailova L.Kh., Shamsutdinova M.Kh. O stroenii koordi-natsionnykh soedinenii medi (II) s L-gistidinom. Zhurnal strukturnoi khimii. 2017; 58(3): 535-546.

Alifkhanova L. M.k. Diss. kand. khim. nauk. Ekaterinburg, 2022, 130 p.

Kapitanova E. I. Diss. kand. khim. nauk. Ekaterinburg, 2021, 169 p.

Petrova Yu.S., Pestov A.V., Usoltse-va M.K. Neudachina L.K. Selective adsorp-tion of silver(I) ions over copper(II) ions on a sulfoethyl derivative of chitosan. Journal of Hazardous Materials. 2015; 299: 696-701. https://doi.org/10.1016/j.jhazmat.2015.08.001

Troshanin N.V., Bychkova T.I. Get-eroligandnye kompleksy medi (II), nikelya (II), kobal'ta (II) s gidrazidom izonikotino-voi kisloty i L-gistidinom. Uchenye zapiski Kazanskogo universiteta. 2021; 163(1): 45-60

Published
2025-04-04
How to Cite
Ilin, V. A., Golota, A. A., Petrova, J. S., Lebedeva, E. L., Pestov, A. V., & Neudachina, L. K. (2025). A study of histidine sorption by sulfoethylated aminopolymers with subsequent determination by ligand exchange capillary electrophoresis method. Sorbtsionnye I Khromatograficheskie Protsessy, 25(1), 45-55. https://doi.org/10.17308/sorpchrom.2025.25/12793