Specific interactions of chromium (VI) oxoanions with anion-exchange membranes and their influence on the behavior of membranes in potassium dichromate solutions
Abstract
The thickness, ion exchange capacity, water content, gel phase volume fractions, specific electrical conductivity, and diffusion permeability of three anion-exchange membranes were determined in NaCl (pH 5.7) and K₂Cr₂O₇ (pH 4.0) solutions. The membranes studied included PFAEM and AEM Type 1 (pore-filled, manufactured by filling an inert substrate with an ion-exchange material) and MA-41P (hot-pressed from ground ion-exchange resin and low-pressure polyethylene powder). The behavior of the studied membranes in NaCl solutions matches independent experimental data for similar membranes and agrees well with the established microheterogeneous model. Near the isoelectric conductivity point, their specific conductivity increases in the series PFAEM ≪ MA-41P < AEM Type 1 with increasing exchange capacity, while in concentrated solutions it becomes governed by the volume fraction of electrically neutral solution in their pores. The integral diffusion permeability coefficients decrease with both increasing ion exchange capacity and external solution dilution due to enhanced Donnan exclusion of co-ions. Notably, commercial membranes show high diffusion permeability primarily caused by large extended macropores at the ion-exchange material/reinforcing fiber interfaces.
In K₂Cr₂O₇ solutions, the electrical conductivity of all membranes decreased by 1-2 orders of magnitude compared to NaCl, attributed to specific interactions between Cr(VI) oxoanions and the membranes’ fixed groups. The integral diffusion permeability coefficients decreased with increasing K₂Cr₂O₇ concentration, likely due to enrichment with polychromate anions. The MA-41P membrane exhibited rapid degradation (within 2-5 hours) due to chromate-induced oxidation of its aromatic polymer matrix and chemisorption by fixed groups. In contrast, PFAEM and AEM Type 1 porous membranes, based on a copolymer of vinylidene fluoride and hexafluoropropylene (PFAEM) or polyacrylamide (AEM Type 1), showed greater stability in chromate solutions. The (CH₃)N⁺(C₈H₁₇)₃ fixed groups of the PFAEM membrane remained stable in K₂Cr₂O₇, unlike the –N⁺(CH₃)₃ groups of the AEM Type 1 and MA-41P membranes.
Downloads
References
Pakade, V.E.; Tavengwa, N.T.; Madikizela, L.M. Recent Advances in Hexavalent Chromi-um Removal from Aqueous Solutions by Ad-sorptive Methods. RSC Adv. 2019; 9: 26142-26164. https://doi.org/10.1039/C9RA05188K
Wang, Q.; Zhang, Y.; Li, Y.; Ren, J.; Qu, G.; Wang, T.; Jia, H. Simultaneous Cu-EDTA Oxidation Decomplexation and Cr(VI) Reduction in Water by Persulfate/Formate Sys-tem: Reaction Process and Mechanisms. Chem. Eng. J. 2022; 427: 131584. htpps://doi.org/10.1016/j.cej.2021.131584
Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem. Res. Toxicol. 2011; 24: 1617-1629. https://doi.org/10.1021/tx200251t
Stojanova, O.F.; Izmajlova, D.R.; Kuro-lap, N.S.; Shaposhnik, V.A. Tehnologija Ochistki Proizvodstvennyh Hromstokov. Prob-lemy himii i himicheskoj tehnologii. 1996; 135135 (In Russ.)
Tan, M.; Yang, S.; Song, C.; He, Z.; Wang, J.; Liu, Y.; Liu, F.; Zhang, Y. Selective Removal of Chromium and Chloride by Flow Electrode Capacitive Deionization (FCDI) with Carrier-Facilitated Ion Exchange Membrane. Chem. Eng. J. 2024; 499: 156182. https://doi.org/10.1016/j.cej.2024.156182
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Ochistka Stochnyh Vod Pri Proizvodstve Produkcii (Tovarov), Vypolnenii Rabot i Oka-zanii Uslug Na Krupnyh Predprijatijah” ITS 8-2022; Moskva, 2022 (In Russ.)
Sadyrbaeva, T.Z. Removal of Chromi-um(VI) from Aqueous Solutions Using a Novel Hybrid Liquid Membrane—Electrodialysis Process. Chem. Eng. Process. Process Intensif. 2016; 99: 183-191. https://doi.org/10.1016/j.cep.2015.07.011
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Gornodobyvajushhaja Promyshlennost'. Ob-shhie Processy i Metody” ITS 16-2023; Mos-kva, 2023 (In Russ.)
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Likvidaci Ob’ektov Nakoplennogo Vreda Okruzhajushhej Srede” ITS 53-2022; Moskva, 2022 (In Russ.)
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Siste-my Obrabotki (Obrashhenija) So Stochnymi Vodami i Othodjashhimi Gazami v Himich-eskoj Promyshlennosti” ITS 47-2023; Moskva, 2023 (In Russ.)
Golder, A.K.; Chanda, A.K.; Samanta, A.N.; Ray, S. Removal of Hexavalent Chromi-um by Electrochemical Reduction–Precipitation: Investigation of Process Perfor-mance and Reaction Stoichiometry. Sep. Purif. Technol. 2011; 76: 345-350. htpps://doi.org/10.1016/j.seppur.2010.11.002
El-Hefny, N.E. Comparison of Liquid–Liquid Extraction of Cr(VI) from Acidic and Alkaline Solutions by Two Different Amine Extractants. Sep. Purif. Technol. 2009; 67: 44-49. https://doi.org/10.1016/j.seppur.2009.03.004
Kumbhar, P.; Patil, S.; Narale, D.; Sartape, A.; Jambhale, C.; Kim, J.-H.; Kolekar, S. Biobased Carbon for Effective Removal of Rhodamine B and Cr(VI) from Aqueous Solu-tion: Kinetic, Isotherm and Thermodynamic Study. Biomass Convers. Biorefinery. 2024; 14: 3535-3550. https://doi.org/10.1007/s13399-022-02625-8
Stojanova, O.F.; Shaposhnik, V.A.; Shkutina, I.V. Sorbcija i Razdelenie Neor-ganicheskih Anionov v Razbavlennyh Hrom-soderzhashhih Rastvorah. Problemy himii i himicheskoj tehnologii. 1998; 3: 163-165. (In Russ.)
Yan, R.; Luo, D.; Fu, C.; Wang, Y.; Zhang, H.; Wu, P.; Jiang, W. Harmless Treat-ment and Selective Recovery of Acidic Cu(II)-Cr(VI) Hybrid Wastewater via Coupled Photo-Reduction and Ion Exchange. Sep. Purif. Tech-nol. 2020; 234: 116130. https://doi.org/10.1016/j.seppur.2019.116130
Addala, A.; Boudiaf, M.; Elektorowicz, M.; Bentouhami, E.; Bengeurba, Y. Amberlite IRC-718 Ion Chelating Resin Extraction of Hazardous Metal Cr (VI) from Aqueous Solu-tions: Equilibrium and Theoretical Modeling. Water Sci. Technol. 2021; 84: 1206-1216. https://doi.org/10.2166/wst.2021.309
Vallejo, M.E.; Persin, F.; Innocent, C.; Sistat, P.; Pourcelly, G. Electrotransport of Cr(VI) through an Anion Exchange Membrane. Sep. Purif. Technol. 2000; 21: 61-69. https://doi.org/10.1016/S1383-5866(00)00189-1
dos Santos, C.S.L.; Miranda Reis, M.H.; Cardoso, V.L.; de Resende, M.M. Elec-trodialysis for Removal of Chromium (VI) from Effluent: Analysis of Concentrated Solution Saturation. J. Environ. Chem. Eng. 2019; 7; 103380. https://doi.org/10.1016/j.jece.2019.103380
Liu, Y.; Ke, X.; Wu, X.; Ke, C.; Chen, R.; Chen, X.; Zheng, X.; Jin, Y.; Van der Bruggen, B. Simultaneous Removal of Triva-lent Chromium and Hexavalent Chromium from Soil Using a Modified Bipolar Membrane Electrodialysis System. Environ. Sci. Technol. 2020; 54: 13304-13313. https://doi.org/10.1021/acs.est.0c04105
Mkheidze, N.; Gotsiridze, R.; Dav-itadze, R.; Kontselidze, L.; Mkheidze, S. Im-provement of Technological Modes of Electro-dialysis Apparatus for Treatment of Chromium-Containing Waste Waters. Ecol. Eng. Environ. Technol. 2021; 22: 47-54. htpps://doi.org/10.12912/27197050/139409
Lorrain, Y.; Pourcelly, G.; Gavach, C. Transport Mechanism of Sulfuric Acid through an Anion Exchange Membrane. Desalination. 1997; 109: 231-239. https://doi.org/10.1016/S0011-9164(97)00069-6
Vallejo, M.E.; Huguet, P.; Innocent, C.; Persin, F.; Bribes, J.L.; Pourcelly, G. Con-tribution of Raman Spectroscopy to the Com-prehension of Limiting Phenomena Occurring with a Vinylpyridinium Anion Exchange Membrane during the Electrolysis of Cr(VI) Solutions. J. Phys. Chem. B. 1999; 103: 11366-11371. https://doi.org/10.1021/jp992676q
Shishkina, S. V.; Zhelonkina, E.A.; Kononova, T. V. Effect of Chromium Com-pounds on the Properties of Ion-Exchange Membranes. Pet. Chem. 2013; 53: 494-499. https://doi.org/10.1134/S0965544113070165
Çengeloğlu, Y.; Tor, A.; Kir, E.; Ersöz, M. Transport of Hexavalent Chromium through Anion-Exchange Membranes. Desalination. 2003; 154: 239-246. https://doi.org/10.1016/S0011-9164(03)80039-5
Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion Exchange Membranes: New Devel-opments and Applications. J. Memb. Sci. 2017; 522: 267-291. https://doi.org/10.1016/j.memsci.2016.09.033
Choi, J.; Kim, W.-S.; Kim, H.K.; Yang, S.; Jeong, N.J. Ultra-Thin Pore-Filling Membranes with Mirror-Image Wave Patterns for Improved Power Density and Reduced Pressure Drops in Stacks of Reverse Electrodi-alysis. J. Memb. Sci. 2021; 620: 118885. https://doi.org/10.1016/j.memsci.2020.118885
Chan, K.H.; Malik, M.; Azimi, G. Separation of Lithium, Nickel, Manganese, and Cobalt from Waste Lithium-Ion Batteries Using Electrodialysis. Resour. Conserv. Recycl. 2022; 178: 106076. https://doi.org/10.1016/j.resconrec.2021.106076
Wang, B.; Yan, J.; Wang, H.; Li, R.; Fu, R.; Jiang, C.; Nikonenko, V.; Pismen-skaya, N.; Wang, Y.; Xu, T. Ionic Liquid-Based Pore-Filling Anion-Exchange Mem-branes Enable Fast Large-Sized Metallic Anion Migration in Electrodialysis. J. Memb. Sci. 2023; 670: 121348. https://doi.org/10.1016/j.memsci.2023.121348
Bhat, G.S.; Malkan, S.R.; Islam, S. Spunbond and Meltblown Web Formation. In Handbook of Nonwovens; Woodhead Publish-ing, 2022; 217-278.
Güler, E.; van Baak, W.; Saakes, M.; Nijmeijer, K. Monovalent-Ion-Selective Mem-branes for Reverse Electrodialysis. J. Memb. Sci. 2014; 455: 254-270. https://doi.org/10.1016/j.memsci.2013.12.054
Van Engelen, J.A.W. Composite Membranes 2017, 15.
Pismenskaya, N.D.; Pokhidnia, E.V.; Pourcelly, G.; Nikonenko, V.V. Can the Elec-trochemical Performance of Heterogeneous Ion-Exchange Membranes Be Better than That of Homogeneous Membranes? J. Memb. Sci. 2018; 566: 54-68. https://doi.org/10.1016/j.memsci.2018.08.055
Sarapulova, V.; Shkorkina, I.; Mareev, S.; Pismenskaya, D.; Kononenko, N.; Larchet, C.; Dammak, L.; Nikonenko, V. Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heteroge-neous Membranes MK-40 and MA-41. Mem-branes (Basel). 2019; 9: 84. https://doi.org/10.3390/membranes9070084
Zabolotskii, V.I.; Chermit, R.K.; Sharafan, M. V. Mass Transfer Mechanism and Chemical Stability of Strongly Basic Ani-on-Exchange Membranes under Overlimiting Current Conditions. Russ. J. Electrochem. 2014; 50: 38-45. https://doi.org/10.1134/S102319351401011X
Szabó, M.; Kalmár, J.; Ditrói, T.; Bel-lér, G.; Lente, G.; Simic, N.; Fábián, I. Equilib-ria and Kinetics of Chromium(VI) Speciation in Aqueous Solution – A Comprehensive Study from PH 2 to 11. Inorganica Chim. Acta. 2018; 472: 295-301. https://doi.org/10.1016/j.ica.2017.05.038
Berezina, N.P.; Kononenko, N.A.; Dy-omina, O.A.; Gnusin, N.P. Characterization of Ion-Exchange Membrane Materials: Properties vs Structure. Adv. Colloid Interface Sci. 2008; 139: 3-28. https://doi.org/10.1016/j.cis.2008.01.002
Zabolotsky, V.I.; Nikonenko, V. V. Ef-fect of Structural Membrane Inhomogeneity on Transport Properties. J. Memb. Sci. 1993; 79: 181-198. https://doi.org/10.1016/0376-7388(93)85115-D
Karpenko, L.V.; Demina, O.A.; Dvorkina, G.A.; Parshikov, S.B.; Larshe, K.; Okler, B.; Berezina, N.P. Sravnitel'noe Izuchenie Metodov Opredelenija Udel'noj Jel-ektroprovodnosti Ionoobmennyh Membran. Jelektrohimija 2001; 37: 328-335. (In Russ.)
Pismenskaya, N.D.; Nevakshenova, E.E.; Nikonenko, V. V. Using a Single Set of Structural and Kinetic Parameters of the Mi-croheterogeneous Model to Describe the Sorp-tion and Kinetic Properties of Ion-Exchange Membranes. Pet. Chem. 2018; 58: 465-473. htpps://doi.org/10.1134/S0965544118060087
Pismenskaya, N.; Sarapulova, V.; Ne-vakshenova, E.; Kononenko, N.; Fomenko, M.; Nikonenko, V. Concentration Dependencies of Diffusion Permeability of Anion-Exchange Membranes in Sodium Hydrogen Carbonate, Monosodium Phosphate, and Potassium Hy-drogen Tartrate Solutions. Membranes (Basel). 2019; 9: 170. https://doi.org/10.3390/membranes9120170
Sarapulova, V.V.; Titorova, V.D.; Ni-konenko, V.V.; Pis'menskaja, N.. Transportnye Harakteristiki Gomogennyh i Geterogennyh Ionoobmennyh Membran v Rastvorah NaCl, CaCl2 i Na2SO4. Наименование журнала. 2019; 9: 98-213. (In Russ.)
Shaposhnik V. A. Kinetic of the electrodialysis. Voronezh: VGU, 1989. 176 p. (In Russ.)
Vasilieva, V.I.; Meshcheryakova, E.E.; Falina, I. V.; Kononenko, N.A.; Brovkina, M.A.; Akberova, E.M. Effect of Heterogene-ous Ion-Exchange Membranes Composition on Their Structure and Transport Properties. Membr. Membr. Technol. 2023; 5: 139-147. htpps://doi.org/10.1134/S2517751623030083
Sarapulova, V.; Pismenskaya, N.; Ti-torova, V.; Sharafan, M.; Wang, Y.; Xu, T.; Zhang, Y.; Nikonenko, V. Transport Character-istics of CJMAEDTM Homogeneous Anion Exchange Membranes in Sodium Chloride and Sodium Sulfate Solutions. Int. J. Mol. Sci. 2021; 22: 1415. https://doi.org/10.3390/ijms22031415
Helfferich, F.G. Ion Exchange; Dover Publications: New York, USA, 1995; 624 р.
Sarapulova, V.; Nevakshenova, E.; Pismenskaya, N.; Dammak, L.; Nikonenko, V. Unusual Concentration Dependence of Ion-Exchange Membrane Conductivity in Ampho-lyte-Containing Solutions: Effect of Ampholyte Nature. J. Memb. Sci. 2015; 479: 28-38. https://doi.org/10.1016/j.memsci.2015.01.015
Belashova, E.D.; Pismenskaya, N.D.; Nikonenko, V.V.; Sistat, P.; Pourcelly, G. Cur-rent-Voltage Characteristic of Anion-Exchange Membrane in Monosodium Phosphate Solu-tion. Modelling and Experiment. J. Memb. Sci. 2017; 542; 177-185. https://doi.org/10.1016/j.memsci.2017.08.002
Cong, M.; Jia, Y.; Wang, H.; Wang, M. Preparation of Acid Block Anion Exchange Membrane with Quaternary Ammonium Groups by Homogeneous Amination for Elec-trodialysis-Based Acid Enrichment. Sep. Purif. Technol. 2020; 238: 116396. https://doi.org/10.1016/j.seppur.2019.116396
Chen, Q.; Luo, J.; Liao, J.; Zhu, C.; Li, J.; Xu, J.; Xu, Y.; Ruan, H.; Shen, J. Tuning the Length of Aliphatic Chain Segments in Ar-omatic Poly(Arylene Ether Sulfone) to Tailor the Micro-Structure of Anion-Exchange Mem-brane for Improved Proton Blocking Perfor-mance. J. Memb. Sci. 2022; 641: 119860. https://doi.org/10.1016/j.memsci.2021.119860
Saldadze, K.M.; Kopylova, V.D. Complex-Forming Ion Exchangers; Khimiya: Moscow, 1980; 336 р. (In Russ.)
Gode, F.; Pehlivan, E. Removal of Cr(VI) from Aqueous Solution by Two Lewa-tit-Anion Exchange Resins. J. Hazard. Mater. 2005; 119: 175-182. https://doi.org/10.1016/j.jhazmat.2004.12.004
Bao, S.; Duan, J.; Zhang, Y. Recovery of V(V) from Complex Vanadium Solution Us-ing Capacitive Deionization (CDI) with Res-in/Carbon Composite Electrode. Chemosphere. 2018; 208: 14-20. https://doi.org/10.1016/j.chemosphere.2018.05.149
Balan, C.; Volf, I.; Bilba, D. Chromi-um (VI) Removal from Aqueous Solutions by Purolite Base Anion-Exchange Resins with Gel Structure. Chem. Ind. Chem. Eng. Q. 2013; 19: 615-628. https://doi.org/10.2298/CICEQ120531095B
Pismenskaya, N.; Rybalkina, O.; Sol-onchenko, K.; Butylskii, D.; Nikonenko, V. Phosphates Transfer in Pristine and Modified CJMA-2 Membrane during Electrodialysis Processing of NaxH(3−x)PO4 Solutions with PH from 4.5 to 9.9. Membranes (Basel). 2023; 13(7): 647. https://doi.org/10.3390/membranes13070647
Merle, G.; Wessling, M.; Nijmeijer, K. Anion Exchange Membranes for Alkaline Fuel Cells: A Review. J. Memb. Sci. 2011; 377: 1-35. https://doi.org/10.1016/j.memsci.2011.04.043
Delimi, R.; Sandeaux, J.; Sandeaux, R.; Gavach, C. Properties of an Anion Ex-change Membrane in Contact with Aqueous Solutions of Sodium Chloride and Sodium Benzenecarboxylate or Benzenesulfonate. J. Memb. Sci. 1995; 103; 83-94. htpps://doi.org/10.1016/0376-7388(94)00310-U
Marken, F.; Hayman, C.M.; Bulman Page, P.C. Chromate and Dichromate Electro-Insertion Processes into a N,N,N′,N′-Tetraoctylphenylenediamine Redox Liquid. Electroanalysis. 2002; 14: 172. https://doi.org/10.1002/1521-4109
Badessa, T.; Shaposhnik, V. The De-pendence of Electrical Conductivity of Ion-Exchange Membranes on the Charge of Coun-ter Ion. Kondensirovannye sredy i mezhfaznye granicy. 2014; 16: 129-133.
Alonso, A. Modelling and Simulation of Integrated Membrane Processes for Recov-ery of Cr(VI) with Aliquat 336. J. Memb. Sci. 1996; 110: 151-167. https://doi.org/10.1016/0376-7388(95)00228-6
Senila, M. Polymer Inclusion Membranes (PIMs) for Metal Separation-Toward Environmentally Friendly Production and Ap-plications. Polymers (Basel). 2025; 17: 725. https://doi.org/10.3390/polym17060725
Vacek, V.; Rod, V. Diffusion Coeffi-cients of Potassium Chromate and Dichromate in Water at 25 °C. Collect. Czechoslov. Chem. Commun. 1986; 51: 1403-1406. htpps://doi.org/10.1135/cccc19861403
Iadicicco, N.; Paduano, L.; Vitagliano, V. Diffusion Coefficients for the System Potas-sium Chromate-Water at 25 °C. J. Chem. Eng. Data. 1996; 41: 529-533. https://doi.org/10.1021/je9502861
Marcus, Y. Ions in Solution and Their Solvation; Hoboken, New Jersey: John Wiley & Sons, Inc., 2015; 298 р.
Hoffmann, M.M.; Darab, J.G.; Fulton, J.L. An Infrared and X-Ray Absorption Study of the Equilibria and Structures of Chromate, Bichromate, and Dichromate in Ambient Aqueous Solutions. J. Phys. Chem. A. 2001; 105: 1772-1782. https://doi.org/10.1021/jp0027041.
Wu, T.; Tian, J.; Shi, X.; Li, Z.; Feng, J.; Feng, Z.; Li, Q. Predicting Anion Diffusion in Bentonite Using Hybrid Machine Learning Model and Correlation of Physical Quantities. Sci. Total Environ. 2024; 946: 174363. https://doi.org/10.1016/j.scitotenv.2024.174363
Scindia, Y.M.; Pandey, A.K.; Reddy, A.V.R.; Manohar, S.B. Selective Preconcentra-tion and Determination of Chromium(VI) Us-ing a Flat Sheet Polymer Inclusion Sorbent: Potential Application for Cr(VI) Determination in Real Samples. Anal. Chem. 2002; 74: 4204-4212. https://doi.org/10.1021/ac025640u
Miller, S.L.; Orlemann, E.F. Non-Additivity of Polarographic Diffusion Currents with Mixtures of Certain Reducible Species. J. Am. Chem. Soc. 1953; 75: 2001-2003. https://doi.org/10.1021/ja01104a516
Velasco, G.; Gutiérrez-Granados, S.; Ponce de León, C.; Alatorre, A.; Walsh, F.C.; Rodríguez-Torres, I. The Electrochemical Re-duction of Cr(VI) Ions in Acid Solution at Tita-nium and Graphite Electrodes. J. Environ. Chem. Eng. 2016; 4: 3610-3617. https://doi.org/10.1016/j.jece.2016.08.004




