Специфические взаимодействия оксоанионов хрома (VI) с анионообменными мембранами и их влияние на поведение мембран в растворах бихромата калия
Аннотация
В растворах NaCl (pH 5.7) и K2Cr2O7 (pH 4.0) определены толщина, обменная емкость, влагосодержание, объёмные доли гелевой фазы, концентрационные зависимости удельной электропроводности и диффузионной проницаемости анионообменных мембран PFAEM, AEM Type 1, изготовленных методом заполнения пор инертной подложки ионообменным материалом, и мембраны МА-41П, изготовленной методом горячего прессования размолотой ионообменной смолы и пудры полиэтилена низкого давления. Поведение исследуемых мембран в растворах NaCl аналогично поведению таких же и подобных им мембран, полученному в независимых экспериментальных исследованиях, и находится в хорошем согласии с прогнозируемым известной микрогетерогенной моделью. Вблизи точки изоэлектропроводности их удельная электропроводность растет в ряду PFAEM<<МА-41П<AEM Type 1 с увеличением обменной емкости. В более концентрированных растворах она контролируется объемной долей электронейтрального раствора, находящегося в их порах. Интегральные коэффициенты диффузионной проницаемости мембран снижаются с ростом их обменной емкости и с разбавлением внешнего раствора благодаря усилению доннановского исключения коионов. Наличие крупных протяженных макропор на границе ионообменный материал/армирующие волокна коммерческих мембран, во многом определяют их высокую диффузионную проницаемость.
Показано, что в исследованном интервале концентраций раствора K2Cr2O7 электропроводность всех мембран снижается на 1-2 порядка по сравнению с растворами NaCl вследствие специфических взаимодействий оксоанионов Cr (VI) c фиксированными группами мембран. Интегральные коэффициенты диффузионной проницаемости мембран уменьшаются с увеличением концентрации K2Cr2O7 в растворе благодаря его обогащению анионами полихроматов. Транспортные характеристики МА-41П быстро (в течение 2-5 часов) деградируют из-за окисления хроматами ароматической полимерной матрицы и их хемосорбции фиксированными группами. Порозаполненные мембраны, основу которых составляет сополимер винилиденфторида и гексафторпропилена (PFAEM) или полиакриламид (AEM Type 1), являются более стабильными в хроматсодержащих растворах. Фиксированные группы (CH3)N+(C8H17)3 мембраны PFAEM устойчиво функционируют в растворах K2Cr2O7, в отличие от фиксированных групп –N+(CH3)3 мембран AEM Type 1 и МА-41П.
Скачивания
Литература
Pakade, V.E.; Tavengwa, N.T.; Madikizela, L.M. Recent Advances in Hexavalent Chromi-um Removal from Aqueous Solutions by Ad-sorptive Methods. RSC Adv. 2019; 9: 26142-26164. https://doi.org/10.1039/C9RA05188K
Wang, Q.; Zhang, Y.; Li, Y.; Ren, J.; Qu, G.; Wang, T.; Jia, H. Simultaneous Cu-EDTA Oxidation Decomplexation and Cr(VI) Reduction in Water by Persulfate/Formate Sys-tem: Reaction Process and Mechanisms. Chem. Eng. J. 2022; 427: 131584. htpps://doi.org/10.1016/j.cej.2021.131584
Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem. Res. Toxicol. 2011; 24: 1617-1629. https://doi.org/10.1021/tx200251t
Stojanova, O.F.; Izmajlova, D.R.; Kuro-lap, N.S.; Shaposhnik, V.A. Tehnologija Ochistki Proizvodstvennyh Hromstokov. Prob-lemy himii i himicheskoj tehnologii. 1996; 135135 (In Russ.)
Tan, M.; Yang, S.; Song, C.; He, Z.; Wang, J.; Liu, Y.; Liu, F.; Zhang, Y. Selective Removal of Chromium and Chloride by Flow Electrode Capacitive Deionization (FCDI) with Carrier-Facilitated Ion Exchange Membrane. Chem. Eng. J. 2024; 499: 156182. https://doi.org/10.1016/j.cej.2024.156182
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Ochistka Stochnyh Vod Pri Proizvodstve Produkcii (Tovarov), Vypolnenii Rabot i Oka-zanii Uslug Na Krupnyh Predprijatijah” ITS 8-2022; Moskva, 2022 (In Russ.)
Sadyrbaeva, T.Z. Removal of Chromi-um(VI) from Aqueous Solutions Using a Novel Hybrid Liquid Membrane—Electrodialysis Process. Chem. Eng. Process. Process Intensif. 2016; 99: 183-191. https://doi.org/10.1016/j.cep.2015.07.011
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Gornodobyvajushhaja Promyshlennost'. Ob-shhie Processy i Metody” ITS 16-2023; Mos-kva, 2023 (In Russ.)
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Likvidaci Ob’ektov Nakoplennogo Vreda Okruzhajushhej Srede” ITS 53-2022; Moskva, 2022 (In Russ.)
Informacionno-Tehnicheskij Spravochnik Po Nailuchshim Dostupnym Tehnologijam “Siste-my Obrabotki (Obrashhenija) So Stochnymi Vodami i Othodjashhimi Gazami v Himich-eskoj Promyshlennosti” ITS 47-2023; Moskva, 2023 (In Russ.)
Golder, A.K.; Chanda, A.K.; Samanta, A.N.; Ray, S. Removal of Hexavalent Chromi-um by Electrochemical Reduction–Precipitation: Investigation of Process Perfor-mance and Reaction Stoichiometry. Sep. Purif. Technol. 2011; 76: 345-350. htpps://doi.org/10.1016/j.seppur.2010.11.002
El-Hefny, N.E. Comparison of Liquid–Liquid Extraction of Cr(VI) from Acidic and Alkaline Solutions by Two Different Amine Extractants. Sep. Purif. Technol. 2009; 67: 44-49. https://doi.org/10.1016/j.seppur.2009.03.004
Kumbhar, P.; Patil, S.; Narale, D.; Sartape, A.; Jambhale, C.; Kim, J.-H.; Kolekar, S. Biobased Carbon for Effective Removal of Rhodamine B and Cr(VI) from Aqueous Solu-tion: Kinetic, Isotherm and Thermodynamic Study. Biomass Convers. Biorefinery. 2024; 14: 3535-3550. https://doi.org/10.1007/s13399-022-02625-8
Stojanova, O.F.; Shaposhnik, V.A.; Shkutina, I.V. Sorbcija i Razdelenie Neor-ganicheskih Anionov v Razbavlennyh Hrom-soderzhashhih Rastvorah. Problemy himii i himicheskoj tehnologii. 1998; 3: 163-165. (In Russ.)
Yan, R.; Luo, D.; Fu, C.; Wang, Y.; Zhang, H.; Wu, P.; Jiang, W. Harmless Treat-ment and Selective Recovery of Acidic Cu(II)-Cr(VI) Hybrid Wastewater via Coupled Photo-Reduction and Ion Exchange. Sep. Purif. Tech-nol. 2020; 234: 116130. https://doi.org/10.1016/j.seppur.2019.116130
Addala, A.; Boudiaf, M.; Elektorowicz, M.; Bentouhami, E.; Bengeurba, Y. Amberlite IRC-718 Ion Chelating Resin Extraction of Hazardous Metal Cr (VI) from Aqueous Solu-tions: Equilibrium and Theoretical Modeling. Water Sci. Technol. 2021; 84: 1206-1216. https://doi.org/10.2166/wst.2021.309
Vallejo, M.E.; Persin, F.; Innocent, C.; Sistat, P.; Pourcelly, G. Electrotransport of Cr(VI) through an Anion Exchange Membrane. Sep. Purif. Technol. 2000; 21: 61-69. https://doi.org/10.1016/S1383-5866(00)00189-1
dos Santos, C.S.L.; Miranda Reis, M.H.; Cardoso, V.L.; de Resende, M.M. Elec-trodialysis for Removal of Chromium (VI) from Effluent: Analysis of Concentrated Solution Saturation. J. Environ. Chem. Eng. 2019; 7; 103380. https://doi.org/10.1016/j.jece.2019.103380
Liu, Y.; Ke, X.; Wu, X.; Ke, C.; Chen, R.; Chen, X.; Zheng, X.; Jin, Y.; Van der Bruggen, B. Simultaneous Removal of Triva-lent Chromium and Hexavalent Chromium from Soil Using a Modified Bipolar Membrane Electrodialysis System. Environ. Sci. Technol. 2020; 54: 13304-13313. https://doi.org/10.1021/acs.est.0c04105
Mkheidze, N.; Gotsiridze, R.; Dav-itadze, R.; Kontselidze, L.; Mkheidze, S. Im-provement of Technological Modes of Electro-dialysis Apparatus for Treatment of Chromium-Containing Waste Waters. Ecol. Eng. Environ. Technol. 2021; 22: 47-54. htpps://doi.org/10.12912/27197050/139409
Lorrain, Y.; Pourcelly, G.; Gavach, C. Transport Mechanism of Sulfuric Acid through an Anion Exchange Membrane. Desalination. 1997; 109: 231-239. https://doi.org/10.1016/S0011-9164(97)00069-6
Vallejo, M.E.; Huguet, P.; Innocent, C.; Persin, F.; Bribes, J.L.; Pourcelly, G. Con-tribution of Raman Spectroscopy to the Com-prehension of Limiting Phenomena Occurring with a Vinylpyridinium Anion Exchange Membrane during the Electrolysis of Cr(VI) Solutions. J. Phys. Chem. B. 1999; 103: 11366-11371. https://doi.org/10.1021/jp992676q
Shishkina, S. V.; Zhelonkina, E.A.; Kononova, T. V. Effect of Chromium Com-pounds on the Properties of Ion-Exchange Membranes. Pet. Chem. 2013; 53: 494-499. https://doi.org/10.1134/S0965544113070165
Çengeloğlu, Y.; Tor, A.; Kir, E.; Ersöz, M. Transport of Hexavalent Chromium through Anion-Exchange Membranes. Desalination. 2003; 154: 239-246. https://doi.org/10.1016/S0011-9164(03)80039-5
Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion Exchange Membranes: New Devel-opments and Applications. J. Memb. Sci. 2017; 522: 267-291. https://doi.org/10.1016/j.memsci.2016.09.033
Choi, J.; Kim, W.-S.; Kim, H.K.; Yang, S.; Jeong, N.J. Ultra-Thin Pore-Filling Membranes with Mirror-Image Wave Patterns for Improved Power Density and Reduced Pressure Drops in Stacks of Reverse Electrodi-alysis. J. Memb. Sci. 2021; 620: 118885. https://doi.org/10.1016/j.memsci.2020.118885
Chan, K.H.; Malik, M.; Azimi, G. Separation of Lithium, Nickel, Manganese, and Cobalt from Waste Lithium-Ion Batteries Using Electrodialysis. Resour. Conserv. Recycl. 2022; 178: 106076. https://doi.org/10.1016/j.resconrec.2021.106076
Wang, B.; Yan, J.; Wang, H.; Li, R.; Fu, R.; Jiang, C.; Nikonenko, V.; Pismen-skaya, N.; Wang, Y.; Xu, T. Ionic Liquid-Based Pore-Filling Anion-Exchange Mem-branes Enable Fast Large-Sized Metallic Anion Migration in Electrodialysis. J. Memb. Sci. 2023; 670: 121348. https://doi.org/10.1016/j.memsci.2023.121348
Bhat, G.S.; Malkan, S.R.; Islam, S. Spunbond and Meltblown Web Formation. In Handbook of Nonwovens; Woodhead Publish-ing, 2022; 217-278.
Güler, E.; van Baak, W.; Saakes, M.; Nijmeijer, K. Monovalent-Ion-Selective Mem-branes for Reverse Electrodialysis. J. Memb. Sci. 2014; 455: 254-270. https://doi.org/10.1016/j.memsci.2013.12.054
Van Engelen, J.A.W. Composite Membranes 2017, 15.
Pismenskaya, N.D.; Pokhidnia, E.V.; Pourcelly, G.; Nikonenko, V.V. Can the Elec-trochemical Performance of Heterogeneous Ion-Exchange Membranes Be Better than That of Homogeneous Membranes? J. Memb. Sci. 2018; 566: 54-68. https://doi.org/10.1016/j.memsci.2018.08.055
Sarapulova, V.; Shkorkina, I.; Mareev, S.; Pismenskaya, D.; Kononenko, N.; Larchet, C.; Dammak, L.; Nikonenko, V. Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heteroge-neous Membranes MK-40 and MA-41. Mem-branes (Basel). 2019; 9: 84. https://doi.org/10.3390/membranes9070084
Zabolotskii, V.I.; Chermit, R.K.; Sharafan, M. V. Mass Transfer Mechanism and Chemical Stability of Strongly Basic Ani-on-Exchange Membranes under Overlimiting Current Conditions. Russ. J. Electrochem. 2014; 50: 38-45. https://doi.org/10.1134/S102319351401011X
Szabó, M.; Kalmár, J.; Ditrói, T.; Bel-lér, G.; Lente, G.; Simic, N.; Fábián, I. Equilib-ria and Kinetics of Chromium(VI) Speciation in Aqueous Solution – A Comprehensive Study from PH 2 to 11. Inorganica Chim. Acta. 2018; 472: 295-301. https://doi.org/10.1016/j.ica.2017.05.038
Berezina, N.P.; Kononenko, N.A.; Dy-omina, O.A.; Gnusin, N.P. Characterization of Ion-Exchange Membrane Materials: Properties vs Structure. Adv. Colloid Interface Sci. 2008; 139: 3-28. https://doi.org/10.1016/j.cis.2008.01.002
Zabolotsky, V.I.; Nikonenko, V. V. Ef-fect of Structural Membrane Inhomogeneity on Transport Properties. J. Memb. Sci. 1993; 79: 181-198. https://doi.org/10.1016/0376-7388(93)85115-D
Karpenko, L.V.; Demina, O.A.; Dvorkina, G.A.; Parshikov, S.B.; Larshe, K.; Okler, B.; Berezina, N.P. Sravnitel'noe Izuchenie Metodov Opredelenija Udel'noj Jel-ektroprovodnosti Ionoobmennyh Membran. Jelektrohimija 2001; 37: 328-335. (In Russ.)
Pismenskaya, N.D.; Nevakshenova, E.E.; Nikonenko, V. V. Using a Single Set of Structural and Kinetic Parameters of the Mi-croheterogeneous Model to Describe the Sorp-tion and Kinetic Properties of Ion-Exchange Membranes. Pet. Chem. 2018; 58: 465-473. htpps://doi.org/10.1134/S0965544118060087
Pismenskaya, N.; Sarapulova, V.; Ne-vakshenova, E.; Kononenko, N.; Fomenko, M.; Nikonenko, V. Concentration Dependencies of Diffusion Permeability of Anion-Exchange Membranes in Sodium Hydrogen Carbonate, Monosodium Phosphate, and Potassium Hy-drogen Tartrate Solutions. Membranes (Basel). 2019; 9: 170. https://doi.org/10.3390/membranes9120170
Sarapulova, V.V.; Titorova, V.D.; Ni-konenko, V.V.; Pis'menskaja, N.. Transportnye Harakteristiki Gomogennyh i Geterogennyh Ionoobmennyh Membran v Rastvorah NaCl, CaCl2 i Na2SO4. Наименование журнала. 2019; 9: 98-213. (In Russ.)
Shaposhnik V. A. Kinetic of the electrodialysis. Voronezh: VGU, 1989. 176 p. (In Russ.)
Vasilieva, V.I.; Meshcheryakova, E.E.; Falina, I. V.; Kononenko, N.A.; Brovkina, M.A.; Akberova, E.M. Effect of Heterogene-ous Ion-Exchange Membranes Composition on Their Structure and Transport Properties. Membr. Membr. Technol. 2023; 5: 139-147. htpps://doi.org/10.1134/S2517751623030083
Sarapulova, V.; Pismenskaya, N.; Ti-torova, V.; Sharafan, M.; Wang, Y.; Xu, T.; Zhang, Y.; Nikonenko, V. Transport Character-istics of CJMAEDTM Homogeneous Anion Exchange Membranes in Sodium Chloride and Sodium Sulfate Solutions. Int. J. Mol. Sci. 2021; 22: 1415. https://doi.org/10.3390/ijms22031415
Helfferich, F.G. Ion Exchange; Dover Publications: New York, USA, 1995; 624 р.
Sarapulova, V.; Nevakshenova, E.; Pismenskaya, N.; Dammak, L.; Nikonenko, V. Unusual Concentration Dependence of Ion-Exchange Membrane Conductivity in Ampho-lyte-Containing Solutions: Effect of Ampholyte Nature. J. Memb. Sci. 2015; 479: 28-38. https://doi.org/10.1016/j.memsci.2015.01.015
Belashova, E.D.; Pismenskaya, N.D.; Nikonenko, V.V.; Sistat, P.; Pourcelly, G. Cur-rent-Voltage Characteristic of Anion-Exchange Membrane in Monosodium Phosphate Solu-tion. Modelling and Experiment. J. Memb. Sci. 2017; 542; 177-185. https://doi.org/10.1016/j.memsci.2017.08.002
Cong, M.; Jia, Y.; Wang, H.; Wang, M. Preparation of Acid Block Anion Exchange Membrane with Quaternary Ammonium Groups by Homogeneous Amination for Elec-trodialysis-Based Acid Enrichment. Sep. Purif. Technol. 2020; 238: 116396. https://doi.org/10.1016/j.seppur.2019.116396
Chen, Q.; Luo, J.; Liao, J.; Zhu, C.; Li, J.; Xu, J.; Xu, Y.; Ruan, H.; Shen, J. Tuning the Length of Aliphatic Chain Segments in Ar-omatic Poly(Arylene Ether Sulfone) to Tailor the Micro-Structure of Anion-Exchange Mem-brane for Improved Proton Blocking Perfor-mance. J. Memb. Sci. 2022; 641: 119860. https://doi.org/10.1016/j.memsci.2021.119860
Saldadze, K.M.; Kopylova, V.D. Complex-Forming Ion Exchangers; Khimiya: Moscow, 1980; 336 р. (In Russ.)
Gode, F.; Pehlivan, E. Removal of Cr(VI) from Aqueous Solution by Two Lewa-tit-Anion Exchange Resins. J. Hazard. Mater. 2005; 119: 175-182. https://doi.org/10.1016/j.jhazmat.2004.12.004
Bao, S.; Duan, J.; Zhang, Y. Recovery of V(V) from Complex Vanadium Solution Us-ing Capacitive Deionization (CDI) with Res-in/Carbon Composite Electrode. Chemosphere. 2018; 208: 14-20. https://doi.org/10.1016/j.chemosphere.2018.05.149
Balan, C.; Volf, I.; Bilba, D. Chromi-um (VI) Removal from Aqueous Solutions by Purolite Base Anion-Exchange Resins with Gel Structure. Chem. Ind. Chem. Eng. Q. 2013; 19: 615-628. https://doi.org/10.2298/CICEQ120531095B
Pismenskaya, N.; Rybalkina, O.; Sol-onchenko, K.; Butylskii, D.; Nikonenko, V. Phosphates Transfer in Pristine and Modified CJMA-2 Membrane during Electrodialysis Processing of NaxH(3−x)PO4 Solutions with PH from 4.5 to 9.9. Membranes (Basel). 2023; 13(7): 647. https://doi.org/10.3390/membranes13070647
Merle, G.; Wessling, M.; Nijmeijer, K. Anion Exchange Membranes for Alkaline Fuel Cells: A Review. J. Memb. Sci. 2011; 377: 1-35. https://doi.org/10.1016/j.memsci.2011.04.043
Delimi, R.; Sandeaux, J.; Sandeaux, R.; Gavach, C. Properties of an Anion Ex-change Membrane in Contact with Aqueous Solutions of Sodium Chloride and Sodium Benzenecarboxylate or Benzenesulfonate. J. Memb. Sci. 1995; 103; 83-94. htpps://doi.org/10.1016/0376-7388(94)00310-U
Marken, F.; Hayman, C.M.; Bulman Page, P.C. Chromate and Dichromate Electro-Insertion Processes into a N,N,N′,N′-Tetraoctylphenylenediamine Redox Liquid. Electroanalysis. 2002; 14: 172. https://doi.org/10.1002/1521-4109
Badessa, T.; Shaposhnik, V. The De-pendence of Electrical Conductivity of Ion-Exchange Membranes on the Charge of Coun-ter Ion. Kondensirovannye sredy i mezhfaznye granicy. 2014; 16: 129-133.
Alonso, A. Modelling and Simulation of Integrated Membrane Processes for Recov-ery of Cr(VI) with Aliquat 336. J. Memb. Sci. 1996; 110: 151-167. https://doi.org/10.1016/0376-7388(95)00228-6
Senila, M. Polymer Inclusion Membranes (PIMs) for Metal Separation-Toward Environmentally Friendly Production and Ap-plications. Polymers (Basel). 2025; 17: 725. https://doi.org/10.3390/polym17060725
Vacek, V.; Rod, V. Diffusion Coeffi-cients of Potassium Chromate and Dichromate in Water at 25 °C. Collect. Czechoslov. Chem. Commun. 1986; 51: 1403-1406. htpps://doi.org/10.1135/cccc19861403
Iadicicco, N.; Paduano, L.; Vitagliano, V. Diffusion Coefficients for the System Potas-sium Chromate-Water at 25 °C. J. Chem. Eng. Data. 1996; 41: 529-533. https://doi.org/10.1021/je9502861
Marcus, Y. Ions in Solution and Their Solvation; Hoboken, New Jersey: John Wiley & Sons, Inc., 2015; 298 р.
Hoffmann, M.M.; Darab, J.G.; Fulton, J.L. An Infrared and X-Ray Absorption Study of the Equilibria and Structures of Chromate, Bichromate, and Dichromate in Ambient Aqueous Solutions. J. Phys. Chem. A. 2001; 105: 1772-1782. https://doi.org/10.1021/jp0027041.
Wu, T.; Tian, J.; Shi, X.; Li, Z.; Feng, J.; Feng, Z.; Li, Q. Predicting Anion Diffusion in Bentonite Using Hybrid Machine Learning Model and Correlation of Physical Quantities. Sci. Total Environ. 2024; 946: 174363. https://doi.org/10.1016/j.scitotenv.2024.174363
Scindia, Y.M.; Pandey, A.K.; Reddy, A.V.R.; Manohar, S.B. Selective Preconcentra-tion and Determination of Chromium(VI) Us-ing a Flat Sheet Polymer Inclusion Sorbent: Potential Application for Cr(VI) Determination in Real Samples. Anal. Chem. 2002; 74: 4204-4212. https://doi.org/10.1021/ac025640u
Miller, S.L.; Orlemann, E.F. Non-Additivity of Polarographic Diffusion Currents with Mixtures of Certain Reducible Species. J. Am. Chem. Soc. 1953; 75: 2001-2003. https://doi.org/10.1021/ja01104a516
Velasco, G.; Gutiérrez-Granados, S.; Ponce de León, C.; Alatorre, A.; Walsh, F.C.; Rodríguez-Torres, I. The Electrochemical Re-duction of Cr(VI) Ions in Acid Solution at Tita-nium and Graphite Electrodes. J. Environ. Chem. Eng. 2016; 4: 3610-3617. https://doi.org/10.1016/j.jece.2016.08.004





