Semi-quantitative analysis for determination of the content of substances on the surface by the laser desorption/ionization method
Abstract
The paper proposes a method for semi-quantitative determination of the content of substances on the surface of structural materials. The proposed method is based on the construction of calibration graphs and the establishment of mathematical dependencies between the analytical signal and the concentration of the studied substance (calibration graph method). The intensity of the decationated or characteristic peak in the mass spectra obtained by laser desorption/ionization is chosen as the analytical signal. The use of mass spectrometric imaging made it possible to determine the change in the analytical signal of the test substance at different points on the surface. Based on these data, it was possible to estimate the average concentration of the studied compounds on the sample surface. The method was tested with two compounds, organic and inorganic in nature. Nickel chloride, containing a strong corrosive agent in the form of chlorine ion, and benzotriazole, often used as a corrosion inhibitor, were used as an inorganic compound.
When studying nickel chloride on an inert surface using [NiCl]Cl- (m/z=128 Da) and [NiCl]2Cl- (m/z=163 Da) ions, linear dependences of the peak intensity on the concentration of the substance with a coefficient of determination R2 greater than 0.99 were constructed. When processing structural material of the Ad-0 brand with a solution of nickel chloride with a concentration of 0.01 g/dm3, the error in determining the substance content on the surface for each of the ions did not exceed 26%. A comparison of the obtained values with the results of induction-coupled plasma mass spectrometry showed good convergence.
When studying benzotriazole on an inert surface, no linear relationship was established between the intensity of the molecular peak and the concentration. The internal standard method was used to obtain a linear equation (graph). 1-hydroxybenzotriazole was chosen as the internal standard. It should be noted that in this case, the graph was constructed in the coordinates of the ratio of the intensities and concentrations of the test substance and the standard. In accordance with the obtained calibration equation, the deviation of the calculated concentration of benzotriazole on the surface of the metal plate from the experimental concentration was 23.4%. A controlled analysis by high-performance liquid chromatography with mass spectrometric detection confirmed the operability of the proposed method in terms of experimental error.
Thus, the laser desorption/ionization method together with imaging can be used to assess the substance content on the surface.
Downloads
References
Iartsev S.D., Pytskii I.S., Karnaeva A.E., Buryak A.K. Rus. J. of Phys. Chem. B., 2017; 11(4): 680-683. https://doi.org/10.1134/S199079311704025X
Pytskii I.S., Buryak A.K., Prot. Met. Phys. Chem. Surf., 2011; 47(1): 133-138. https://doi.org/10.1134/S2070205111010163
Esparza C.A., Varlamov A.V., Polovkov N.Yu., Borisov R.S., Zaikin V.G., J. of Anal. Chem., 2018; 73(13): 1242-1247. https://doi.org/
1134/S106193481813004X
Esparza C., Borisov R.S., Varlamov A.V., Zaikin, V.G., J. Chromatogr. A., 2016; 1470(28): 118-122. https://doi.org/10.1016/j.chroma.2016.09.075
Zhang Z., Ratnayaka S.N., Wirth M.J., J. Chromatogr. A., 2011; 1218(40): 7196-7202. https://doi.org/10.1016/j.chroma.2011.07.098
Paramonov S.A., Ulyanov A.V., Buryak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2010; 10(3): 440-449. (In Russ.)
Minenkova I.V., Pytskii I.S., Buryak A.K., Prot. Met. Phys. Chem. Surf., 2022; 58(6): 609-615. https://doi.org/10.1134/S2070205122060120
Burjak A.K., Platonova N.P, Pyckij I.S, Ul'janov A.V., Analitika, 2019; 9(2): 126-135.
Buryak A.K., Serdyuk T.M., Rus. Chem. Rev. 2013; 82(4): 366-392. https://doi.org/10.1070/RC2013v082n04ABEH004304
Iartsev S.D., Pytskii I.S., Belova A.S., Buryak A.K., J. Anal. Chem., 2018; 73(1): 46-51. https://doi.org/10.1134/S1061934818010124
Iartsev S.D., Pytskii I.S, Zenkevich I.G., Buryak A.K., J. Anal. Chem., 2017; 72(6): 624-631. https://doi.org/10.1134/S106193481706017X
Kuznecova E.C., Pyckij I.S., Burjak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2018; 18(2): 238-242. https://doi.org/10.17308/sorpchrom.2018.18/505 (In Russ.)
Pytskii I.S., Kuznetsova E.S., Buryak A.K., Rus. J. Phys. Chem. A., 2023; 97(11): 2559-2563. https://doi.org/10.1134/S0036024423110262
Kuznecova E.C., Pyckij I.S., Burjak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2020; 20(5): 602-607. https://doi.org/10.17308/sorpchrom.2020.20/3051 (In Russ.)
Linh C.N., Chi N.V., Quang N.Q., Kien D.V., Quan L.H., Zyablov A.N., Minenkova I.V. Obnaruzhenie ionov hlora na poverhnosti armaturnyh stalej posle kontakta s model'noj sredoj metodom mass-spektrometrii, Izvestija Vysshih Uchebnyh Zavedenij. Serija «Himija i Himicheskaja Tehnologija», 2022; 65(6): 6-11. https://doi.org/10.6060/ivkkt.20226506.6520 (In Russ.)
Ryan D.J., Spraggins J.M., Caprioli R.M., Curr. Opin. Chem. Biol., 2019; 48: 64-72. https://doi.org/10.1016/j.cbpa.2018.10.023
Schwamborn K., Kriegsmann M., Weichert W., Biochim. Biophys. Acta Proteins Proteom., 2017; 1865(7): 776-783. https://doi.org/10.1016/j.bbapap.2016.10.014
Pytskii I.S., Kuznetsova E.S., Buryak A.K., Russ. J. Phys. Chem. A., 2022; 96(10): 2215-2221. https://doi.org/10.1134/S0036024422100260
Kuznecova E.S., Pyckij I.S., Buryak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2019; 19(6): 691-695. https://doi.org/10.17308/sorpchrom.2019.19/2230 (In Russ.)
Iartsev S.D., Matyushin D.D., Pytskii I. S., Kuznetsova E. S., Buryak A.K., Surface Innovations, 2018; 6(4–5): 244-249. https://doi.org/10.1680/jsuin.18.00015
Lin' K.N., SHevcov D.S., CHi N.V., Kuang N.K., Minenkova I.V., Gam F.T., T'en N.A., Zyablov A.N., Sorbtsionnye I Khromatograficheskie Protsessy, 2023; 23(5): 906-914. https://doi.org/10.17308/sorpchrom.2023.23/11725 (In Russ.)
Pytskii I.S., Minenkova I.V., Kuznetsova E.S., Zalavutdinov R.K., Uleanov A.V., Buryak A.K., Pure Appl. Chem., 2020; 92(8): 1227-1237. https://doi.org/10.1515/pac-2019-1219
GOST 4784-2019. Mezhgosudarstvennyj standart. Alyuminij i splavy alyuminievye deformiruemye. Marki, 2019. (In Russ.)
Kalambet YU.A. Metod vnutrennego standarta – ideya i voploshchenie. Partnery i konkurenty, 2004: 4: 32-36. (In Russ.)
Khesina Z.B., Iartsev S.D., Pytskii I.S., Goncharova I.S., Paramonov S.A., Milutin V.V., Nekrasova N.A., Buryak A.K., Russ. Chem. Bull., 2017; 66(6): 995-998. https://doi.org/10.1007/s11172-017-1845-6




