Semi-quantitative analysis for determination of the content of substances on the surface by the laser desorption/ionization method

  • Gleb K. Golovin Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow
  • Irina V. Minenkova Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow https://orcid.org/0000-0003-3323-5394
  • Ivan S. Pytsky Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow https://orcid.org/0000-0003-1849-1138
  • Alexey K. Buryak Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow https://orcid.org/0000-0002-2458-5993
Keywords: : corrosion, mass spectrometry, semi-quantitative method, laser desorption/ionization, visualization

Abstract

The paper proposes a method for semi-quantitative determination of the content of substances on the surface of structural materials. The proposed method is based on the construction of calibration graphs and the establishment of mathematical dependencies between the analytical signal and the concentration of the studied substance (calibration graph method). The intensity of the decationated or characteristic peak in the mass spectra obtained by laser desorption/ionization is chosen as the analytical signal. The use of mass spectrometric imaging made it possible to determine the change in the analytical signal of the test substance at different points on the surface.  Based on these data, it was possible to estimate the average concentration of the studied compounds on the sample surface. The method was tested with two compounds, organic and inorganic in nature. Nickel chloride, containing a strong corrosive agent in the form of chlorine ion, and benzotriazole, often used as a corrosion inhibitor, were used as an inorganic compound.

When studying nickel chloride on an inert surface using [NiCl]Cl- (m/z=128 Da) and [NiCl]2Cl- (m/z=163 Da) ions, linear dependences of the peak intensity on the concentration of the substance with a coefficient of determination R2 greater than 0.99 were constructed. When processing structural material of the Ad-0 brand with a solution of nickel chloride with a concentration of 0.01 g/dm3, the error in determining the substance content on the surface for each of the ions did not exceed 26%. A comparison of the obtained values with the results of induction-coupled plasma mass spectrometry showed good convergence.

When studying benzotriazole on an inert surface, no linear relationship was established between the intensity of the molecular peak and the concentration. The internal standard method was used to obtain a linear equation (graph). 1-hydroxybenzotriazole was chosen as the internal standard. It should be noted that in this case, the graph was constructed in the coordinates of the ratio of the intensities and concentrations of the test substance and the standard. In accordance with the obtained calibration equation, the deviation of the calculated concentration of benzotriazole on the surface of the metal plate from the experimental concentration was 23.4%. A controlled analysis by high-performance liquid chromatography with mass spectrometric detection confirmed the operability of the proposed method in terms of experimental error.

Thus, the laser desorption/ionization method together with imaging can be used to assess the substance content on the surface.

Downloads

Download data is not yet available.

Author Biographies

Gleb K. Golovin, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow

student, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation

Irina V. Minenkova, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow

senior researcher, PhD Chemistry, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation, ORCID 0000-0003-3323-5394, irina.vl.minenkova@mail.ru

Ivan S. Pytsky, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow

leading researcher, PhD Chemistry, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Acfdemy of Sciences, Moscow, Russian Federation, 0000-0003-1849-1138

Alexey K. Buryak, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Mos-cow

corresponding member RAS, PhD Chemistry, Director of the Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation, ORCID 0000-0002-2458-5993

References

Iartsev S.D., Pytskii I.S., Karnaeva A.E., Buryak A.K. Rus. J. of Phys. Chem. B., 2017; 11(4): 680-683. https://doi.org/10.1134/S199079311704025X

Pytskii I.S., Buryak A.K., Prot. Met. Phys. Chem. Surf., 2011; 47(1): 133-138. https://doi.org/10.1134/S2070205111010163

Esparza C.A., Varlamov A.V., Polovkov N.Yu., Borisov R.S., Zaikin V.G., J. of Anal. Chem., 2018; 73(13): 1242-1247. https://doi.org/

1134/S106193481813004X

Esparza C., Borisov R.S., Varlamov A.V., Zaikin, V.G., J. Chromatogr. A., 2016; 1470(28): 118-122. https://doi.org/10.1016/j.chroma.2016.09.075

Zhang Z., Ratnayaka S.N., Wirth M.J., J. Chromatogr. A., 2011; 1218(40): 7196-7202. https://doi.org/10.1016/j.chroma.2011.07.098

Paramonov S.A., Ulyanov A.V., Buryak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2010; 10(3): 440-449. (In Russ.)

Minenkova I.V., Pytskii I.S., Buryak A.K., Prot. Met. Phys. Chem. Surf., 2022; 58(6): 609-615. https://doi.org/10.1134/S2070205122060120

Burjak A.K., Platonova N.P, Pyckij I.S, Ul'janov A.V., Analitika, 2019; 9(2): 126-135.

Buryak A.K., Serdyuk T.M., Rus. Chem. Rev. 2013; 82(4): 366-392. https://doi.org/10.1070/RC2013v082n04ABEH004304

Iartsev S.D., Pytskii I.S., Belova A.S., Buryak A.K., J. Anal. Chem., 2018; 73(1): 46-51. https://doi.org/10.1134/S1061934818010124

Iartsev S.D., Pytskii I.S, Zenkevich I.G., Buryak A.K., J. Anal. Chem., 2017; 72(6): 624-631. https://doi.org/10.1134/S106193481706017X

Kuznecova E.C., Pyckij I.S., Burjak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2018; 18(2): 238-242. https://doi.org/10.17308/sorpchrom.2018.18/505 (In Russ.)

Pytskii I.S., Kuznetsova E.S., Buryak A.K., Rus. J. Phys. Chem. A., 2023; 97(11): 2559-2563. https://doi.org/10.1134/S0036024423110262

Kuznecova E.C., Pyckij I.S., Burjak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2020; 20(5): 602-607. https://doi.org/10.17308/sorpchrom.2020.20/3051 (In Russ.)

Linh C.N., Chi N.V., Quang N.Q., Kien D.V., Quan L.H., Zyablov A.N., Minenkova I.V. Obnaruzhenie ionov hlora na poverhnosti armaturnyh stalej posle kontakta s model'noj sredoj metodom mass-spektrometrii, Izvestija Vysshih Uchebnyh Zavedenij. Serija «Himija i Himicheskaja Tehnologija», 2022; 65(6): 6-11. https://doi.org/10.6060/ivkkt.20226506.6520 (In Russ.)

Ryan D.J., Spraggins J.M., Caprioli R.M., Curr. Opin. Chem. Biol., 2019; 48: 64-72. https://doi.org/10.1016/j.cbpa.2018.10.023

Schwamborn K., Kriegsmann M., Weichert W., Biochim. Biophys. Acta Proteins Proteom., 2017; 1865(7): 776-783. https://doi.org/10.1016/j.bbapap.2016.10.014

Pytskii I.S., Kuznetsova E.S., Buryak A.K., Russ. J. Phys. Chem. A., 2022; 96(10): 2215-2221. https://doi.org/10.1134/S0036024422100260

Kuznecova E.S., Pyckij I.S., Buryak A.K., Sorbtsionnye I Khromatograficheskie Protsessy, 2019; 19(6): 691-695. https://doi.org/10.17308/sorpchrom.2019.19/2230 (In Russ.)

Iartsev S.D., Matyushin D.D., Pytskii I. S., Kuznetsova E. S., Buryak A.K., Surface Innovations, 2018; 6(4–5): 244-249. https://doi.org/10.1680/jsuin.18.00015

Lin' K.N., SHevcov D.S., CHi N.V., Kuang N.K., Minenkova I.V., Gam F.T., T'en N.A., Zyablov A.N., Sorbtsionnye I Khromatograficheskie Protsessy, 2023; 23(5): 906-914. https://doi.org/10.17308/sorpchrom.2023.23/11725 (In Russ.)

Pytskii I.S., Minenkova I.V., Kuznetsova E.S., Zalavutdinov R.K., Uleanov A.V., Buryak A.K., Pure Appl. Chem., 2020; 92(8): 1227-1237. https://doi.org/10.1515/pac-2019-1219

GOST 4784-2019. Mezhgosudarstvennyj standart. Alyuminij i splavy alyuminievye deformiruemye. Marki, 2019. (In Russ.)

Kalambet YU.A. Metod vnutrennego standarta – ideya i voploshchenie. Partnery i konkurenty, 2004: 4: 32-36. (In Russ.)

Khesina Z.B., Iartsev S.D., Pytskii I.S., Goncharova I.S., Paramonov S.A., Milutin V.V., Nekrasova N.A., Buryak A.K., Russ. Chem. Bull., 2017; 66(6): 995-998. https://doi.org/10.1007/s11172-017-1845-6

Published
2025-11-07
How to Cite
Golovin, G. K., Minenkova, I. V., Pytsky, I. S., & Buryak, A. K. (2025). Semi-quantitative analysis for determination of the content of substances on the surface by the laser desorption/ionization method. Sorbtsionnye I Khromatograficheskie Protsessy, 25(4), 509-519. https://doi.org/10.17308/sorpchrom.2025.25/13279